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Affine fields, which can be used to replace the usual canonical fields, and which induce strictly

homogeneous transformations of the underlying configuration space, are shown to be relevant in the

operator formulation of augmented scalar field models. A characterization of the Hamiltonian and other
basic generators by means of the expectation functional of the square of the field replaces the standard
one based on the expectation functional of the field. Connection with previous work on augmented models
is established through the form of the equation of motion for the field.

. INTRODUCTION

Efforts to understand the singular nature of nonre-
normalizable quantum field theories continue at a
steady pace. In one point of view, which can be dubbed
the “hard-core picture” and the essentials of which
were outlined several years ago, bt was argued that
from the standpoint of functional integration nonrenor-
malizable interactions act partially as relative hard
cores projecting out certain of the field histories other-
wise allowed by the free theory. This viewpoint mani-
festly explains the difficulties inherent in a perturbation
expansion about the conventional free theory, and simul-
taneously suggests the search for a “pseudofree” the-
ory, an alternative to the free theory that includes the
hard-core interaction effects and about which any mean-
ingful perturbation must necessarily take place. But
such a general picture, however good it may prove to
be, does not specify just how to go about constructing
a theory incorporating the hard-core effects, either
pseudofree or fully interacting. More recently, guided
by highly specialized soluble models, a fairly definitive
proposal was made as to just how to formulate a theory
in such a way as to take into account the hard-core
effects and thus to constitute a potential theory of non-
renormalizable interactions. At the same time this
specific kind of proposal could be applied to models
conventionally regarded as (super) renormalizable so
as to construct new, noncanonical solutions.

The initial formulation of these alternative models
was in the context of functional integration in which the
conventional action was “augmented” by an additional
term, a term which in no way altered the classical
theory, but which effectively changed the basic measure
in the functional integration.? Lattice-space techniques
were used to give some precision to this formulation.
Subsequently, functional differential equations were
derived for the generating functional of the time-ordered
Green’s functions, ® but this analysis, while providing
a technically convenient formulation, is nevertheless a
fairly straightforward consequence of the functional
integration approach initially taken.

In this paper we reformulate these models once
again, this time on the basis of an “operator approach,”
i.e., field operators, Hamiltonian, Hilbert space, and
all that. This is not as straightforward as it might
appear at first glance since the models in question are
definitely noncanonical, and so the ultimate formulation
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cannot be canonical. In particular, instead of the usual
canonical Heisenberg group we find an alternative kine-
matical group, the affine group, to be relevant. In its
simplest form the affine group is the two-parameter
group of transformations v -p'ly —gq, p>0, of the real
line into itself. Representations of this group have been
studied previously,* and in addition we shall be able to
draw on our own earlier studies of its kinematical ap-
plications in quantum theory. °

In our quantum field applications here, we are ulti-
mately led to consider affine fields, ¢(x) and x(x), x
a spatial variable, that obey the (equal time) affine
commutation relations (ACR), [¢(x), k(y)]=78(x - y)¢(x),
rather than the conventional canonical fields, ¢(x) and
7(x), that obey the (equal time) canonical commutation
relations (CCR), [¢o(x), n(y)]=i6(x-y).

The reasons for choosing such an alternative, non-
canonical operator formulation are not immediately
evident, and our efforts in Sec. II are directed toward
some heuristic motivational arguments. Section III is
devoted to developing the affine field formulation and a
number of results are derived that may be compared
with those from the canonical approach. Especially
noteworthy are the relations we derive that are analogs
of the well-known characterization of a scalar field the-
ory by the expectation functional of the sharp-time field
as developed by Araki.” Our basic philosophy and pri-
mary results are briefly summarized in Sec. IV.

. SIGNIFICANCE OF SCALE TRANSFORMATIONS
IN AUGMENTED FIELD THEORIES

Let us here briefly recall the formal functional inte-
gral defining the augmented model for a quartic self-
interacting scalar field.? In an n-dimensional Euclidean
space-time the generating functional of interest takes
the form (dx=d"x)

Sy =N’ [ exp(i [hd ax - [{3[(v®)?
+ (m? + X% @% + AdY dx) )X, (1)
where X denotes an auxiliary field variable and the con-
ventional action has been augmented by the term

2 /X%92dx, With the formal convention that

Dé&=11d%(x), HX=T1dX(x), (2)
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it follows upon integrating out the X field that
S'(n) =N [ expli [ he dx - W(@)]L'®, (3
where W denotes the conventional Euclidean action,

W(®) = [{3[(ve)? + m?8%] + 194} dx, @)

and
D@ =T1da(x)/| &(x)]. (5)

In Ref. 2 meaning was given to such expressions [in-
cluding (5)] by appealing to a lattice-space formulation
{(regularization).

The conventional approach to quartic self-interacting
scalar field models is characterized instead by the
generating functional

S(r) =N [ expli [ nddx - W(®)]D &, (6)

where J® is given in (2).

Formally speaking, the principal distinction between
the conventional and augmented formulations is just the
choice of the basic formal measure, /& or J‘®. These
two measures have different formal invariances: )&
is translation invariant,

D(@+M=De, m

where (& +A)(x) =®(x) + A(x), for arbitrary Ax); J’®
is scale invariant,

D'(S®)=)"e, (8)
where (S&)(x)=S(x)®(x), for arbitrary S(x) >0. Such

different properties lead to rather distinct consequences.

Recall that it is the goal of regularization and renor-
malization to convert a formal expression such as (6)
into one like

S(h) = [ expli(h, ®)1du(®), (9)

where K denotes a probability measure (e.g., on the
space of tempered distributions, §”), and (%, ®) is sim-
ply a more proper way of writing [#® dx when @ is not
necessarily a function. Now suppose that for some real
vector space |/ (e.g., Cy functions), it follows that

u(®+A)~u(®) (10)

for all Ae l/; in words, the translated measure is equi-
valent to itself (has the same sets of zero measure). If
(10) holds true, then (Euclidean space—time!) canonical
fields exist; and in fact, for the (¢%), and (¢*), models
of constructive quantum field theory® that is undoubtedly
the case. For given the validity of {10) one can introduce
the functional

1/2
S(h, k) = [ expli(h, ®)] (%’@’i’) du(®),

(1)
for suitably many & =~h(x) and k=k{(x), which defines

a representation of the canonical commutation relations
(in integrated form), and which may be given concrete
realization through a GNS (Gel'fand, Naimark, Segal)
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construction as unitary operators acting in a separable
Hilbert space.®

It is intuitively clear that the translation invariant
form /)& is needed in order for (10) to hold true. Indeed,
if (6) is given meaning by regularizing W(®) (e.g.,
through a momentum-space cutoff and a finite space—
time volume), then the so regularized form implicitly
defines a measure that automatically satisfies (10). So
much for the conventional approach.

As for the augmented formulation it can be expected
that regularization and renormalization convert (3) into
the expression

S' () = [ expli(h, ®)]du' (), (12)
where u'(®) is another probability measure on fields
(say on §’, again). Now suppose, instead of (10), that
there exists a real vector space V' (e. g., C7 functions,
again) such that

dp'(S@) ~dp'(®) (13)

for all 8(x) = exp[s(x)] where §cl/’; in words, the scale-
transformed measure is equivalent to itself, If (13)
holds true, then the functional
- 1/2

S'(h, vy = [ expli(h, @)](%) au'(®) (14)
is well defined for suitably many % = h(x) and v = 7(x)
> 0. This functional defines a representation of a group,
the affine group, and the GNS construction again pro-
vides a concrete realization of that group as unitary
operators acting in a separable Hilbert space. Further
discussion of this group and its representations are
reserved to the next section.

In order for (13) to hold, it is intuitively clear that
the scale invariant form J)’® is needed. Moreover, if
(3) is given meaning by regularizing W(®) as above,
then the so regularized form implicitly defines a mea-
sure that automatically satisfies (13).

In fact, even more is true. When a field problem is
reduced by regularization to a problem of essentially
a finite number of degrees of freedom, the associated
probability measure is generally equivalent to itself
under both translation and scaling. For instance, the
probability measure #*(y) on the real line character-
ized by du*(v) = exp(- m1y%) dv is equivalent to itself un-
der both translation (y— v + @) and scaling (v— 0y, > 0).
Consequently, there is, in the regularized formulation
of the model, no argument to favor the canonical ap-
proach over the affine one. The relevant choice is the
one that survives the limit when the regularization is
removed; and for the augmented formulation as in (3)
it seems reasonably clear that the affine approach has
the best chance of survival.

Another argument for scale transformations

Another argument in favor of scale transformations
and thus for the affine group can be readily advanced.
To make this point most clearly let us first recall the
anharmonic oscillator Hamiltonian given by (A > 0)
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This example has been treated earlier by path-integral
techniques, '? and the hard-core effects alluded to at the
outset of this paper arise in this case as well in that
all paths that would otherwise meet or cross =0 are
projected out due to the singular potential. This pro-
jection of certain paths persists even for A~ 0", and
the limiting Hamiltonian differs from the harmonic os-
cillator. The analog for the differential equation of this
path projection is represented by boundary conditions.
In particular, the singular nature of the term x~* per-
mits one to freely rewrite (15) as

1 9° 1, A
= - —X 16

292 |g.0 T2 TR (16)
where B.C. denotes a Dirichlet boundary condition at
x=0, i.e., the wavefunction $(0) =0. As x— 0" the ef-
fects of the potential disappear, but the boundary con-
dition remains.

In this problem the Dirichlet boundary conditions
effectively split the real line into two, dynamically
disconnected parts. And what dynamics keeps separate,
kinematics has no right to mix! Being guided by this
dictum the relevant kinematic group for this singular
problem is not the Heisenberg group—which, along with
exp(ipx), includes translations explig(-42/3x)] that
change the location of the singularity—but the affine
group—which “replaces” translations by explis[(- i3/
ax)x +x{-43/3x)]}, i.e., scale changes or dilations,
and thus does nof change the location of the singularity.“
The moral of this example asserts that in the presence
of differential operators burdened with Dirichlet bound-
ary conditions translation of the underlying configura-
tion space should be avoided,

Consider now, by analogy, the formal expression
representing the Hamiltonian for a quartic self-coupled
scalar field. Here we drop our Euclidean space formu-
lation, choose sharp-time field operators (say at # =0)
and employ a formal Schrodinger-like representation
for the field and its conjugate momentum, The relevant
expression for the Hamiltonian is

H:f{ % [- (5&5%5)2 +[vo@E+ mz<¢>2(x):|

+ A(b‘*(x)}a'x (17

(modulo normal ordering, etc.), where the spatial vari-
able x € R™! and we use ¢ (rather than @) for the
Minkowski-space field variable. This is, of course, a
standard prescription for H.'2

Now, one can imagine (e.g., in high enough space
dimensions) that the potential term [¢*(x) dx diverges
for field configurations otherwise allowed by the free
Hamiltonian, and just as one finds for Schrddinger wave
mechanics, it becomes appropriate to introduce
Dirichlet boundary conditions into (17) so that the wave
functionals vanish on the boundaries of the regions of
infinite potential. Consequently, (17) is more properly
interpreted as
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w3 (o)

+ )\¢>4(x)} dx.

+[vox) P+ mzqaz(x)]

B.C,

(18)

Here B.C., roughly speaking, means that the wave
functional vanishes for field configurations ¢(x) which
are allowed by the quadratic terms but for which the
quartic term diverges. Correctly stated, B.C. means
that the configuration space itself is restricted to re-
gions of finite potential and the wave functional vanishes
on the boundaries.!® Never mind that this prescription
falsely implies that nonrenormalizability arises for
quartic models when » >5 (rather than n > 4); the
Hamiltonian, after all, does nof provide the ultimate
criterion in cases of relative divergence, and it is even
a false indicator of the need for Dirichlet boundary con-
ditions for problems similar to (15) when the potential
has been generalized to |21 &> 0,!" What is ulti-
mately relevant are the space—time configurations,
i.e., the field histories. But we are here arguing for
motivation and not for specifics, and the general idea
behind (18) is perfectly valid—and this is so even though
the boundaries involved are really pretty pathological.

Granting, then, the basic premise behind (18), one
sees immediately that any kinematic field variable
which leads to translation of the underlying field con-
figuration space is highly undesirable. More acceptable
is a transformation that preserves the singularity loca-
tion such as the scaling transformation; for whenever
0<a< S(x)<b<=, it follows that

at [ ¢t dx< (St o*x) dx< b [ ¢*(x) dx, (19)
and so the location of the configuration space boundaries,
cryptically symbolized in (18) by B.C., is preserved.

It is not difficult to see that this argument is not limited
to quartic interactions, nor for that matter to
monomials.

Other arguments for scale transformations and affine
fields can be advanced, but we limit ourselves to those
presented above.

I1l. AFFINE FIELD FORMULATION OF SCALAR
FIELDS

A. Canonical fields

The time-honored canonical approach to scalar quan-
tum field theory begins with the introduction of a Hilbert
space  and a representation of the field ¢(x) and mo-
mentum 7(x), local operators subject to the familiar
CCR

(o), n(y) ] =id(x-y). (20)

Hamiltonians and other important generators are con-
structed out of ™ and ¢. Of course, to make genuine
operators out of 7 and ¢ themselves, the fields need to
be smeared with test functions, and the domain on which
the smeared CCR holds needs to be specified.

In a more rigorous approach to canonical quantization
it is postulated that the smeared fields are self-adjoint
operators and the Weyl (integrated) form of the commu-
tation relations in terms of unitary operators is taken
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as a replacement for (20). But this is just the step we
must avoid, for when Dirichlet boundary conditions are
basic to the Hamiltonian in a Schrddinger-like repre-
sentation, the smeared momentum operator is at best
only a symmetvic operator and not self-adjoint. This
is just a reflection of the nonexistence of unitary oper-
ators for general translations of the request configura-
tion space. As stressed in the last section translations
are to be avoided in such situations. Consequently, we
must choose an alternative approach.

B. Affine fields: General case

Let us introduce the {bijlocal field #{(x,y) formally
defined as

(x, y) =z[1@ o (y) + o (y)71(x)] (21)

which is Hermitian (symmetric as an operator) but
not symmetric in the variables x and y. This local
operator obeys the relation

[x(x,¥), x(u, V)]

=15(y —wk(x, v) - i8(x — V) k{u, y), (22)

and thus the local operators k(x,y) form the elements
(formally) of a Lie algebra. We note also that

[k(x,y), ¢(w)]= - ib(x - Wo(y) (23)

so that the local operators #(x,y) and ¢(u) taken together
also form a Lie algebra. Lastly we note as a conse-
quence of (23) that

[k(x, ¥), p(wp(v)]
=-i8(x-wo(y)o(v) - idx - v)p(w)o(y) (24)

so that the local operators k(x,y) and ¢ (wW¢{v) form yet
another Lie algebra. The fields k(x,y) and ¢(u) are the
(general) affine fields.

Let us next consider the operators

Uly, s]=expli [ flu) o (w) dul

xexpl-i [ s(x, y)k(x, y) dxdy], (25)

and
Uluw, 1= expli [ w(u, V)¢ ¢ (v) dudv]

X expl-1 [ s(x, y)«(x, y) dxdy]. (26)

Here w is a symmetric function and s is in general a
nonsymmetric function of their respective arguments,
and for convenience we assume (say) that f, w, seCy.
We suppose the operators U/ and U are unitary and in-
dividually satisfy group laws that follow from the formal
relations (22), (23) and (22), (24). [Of course, a rigorous
formulation presumes unitary group representations
and weak continuity, and deduces (25), (26), (22), (23),
and (24). 1

We shall require only a few basic properties of such
groups of unitary operators and their generators. Note
first that

U £, slo() U7, s1=UMNw, slp(z) Ulw, s]
= [K(z, (V) dt, 27
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where K is a functional of s given by
K(z,t)=0(z - t) +s(z, t) +%/s(z, x)s(x, t) dx

1
T

s{z, X)s(x, y)sly, D dxdy + - - -, (28)
It is to be noted that K is generally nonsymmetric in its
arguments, and apart from an identity component {i.e.,
8{z - t)], is also a Cq function whenever s is. Of course,
if more general s are allowed, then the K are corre-
spondingly generalized.

It should be remarked that (27) involves the field
homogeneousty, No field translation takes place, and
so the location of the singularity and integrity of the
boundary conditions in an expression such as (18) is
preserved under action of the group U (or 1),

Next we note that

UT[M); S]ZU[— w**y—s]9 (29)
where
w**(u, v) = [wix, K, WKy, v) dxdy. (30)

C. Distinguished states

We shall make particular use of the states
1 wy = Ulw, 0] ‘ 1)
=expli [ wl, Voo (v) dudv]]0). (31)

Here |0) denotes a normalized fiducial vector that will
be identified with the ground state of the Hamiltonian,

and which is also a state invariant under spatial rota-
tions and translations.

One should also consider the states defined by

| =01, 0]| 0) = expli [ f(x)¢(x) @x]| 0) (32)

as well. As usual the functional
E(n=(0in (33)

based on (32) characterizes a cyclic representation of
the field. In like manner the functional

E(10) = (0] ) (34)

based on (31) characterizes the even subspace of that
very representation.

It is evident that the functional E(f) uniquely deter-
mines the functional E(), and under certain circum-
stances, which we shall assume to hold, the converse
is true. Specifically, suppose that E(-f) = E(f); namely
that the state |0) is itself even, as is the case when the
Hamiltonian is field-reversal invariant, i.e., unchanged
for ¢ — — ¢. This invariance holds for the models under
consideration, and with E(ﬂ an even functional, then
the functional E(w) uniquely determines the functional

E(AH.
D. Time-reversal invariance
When |0) is a time-reversal invariant state—a condi-

tion we shall assume satisfied— E(f) uniquely deter-
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mines the state 10) (up to one—irrelevant—overall
phase). And, moreover, since the state 10) is itself
even, then the functional E(w) also uniquely determines
the time-reversal invariant state (0) just as well as
E(f) does.

The time-reversal invariance of [0) has the following
standard consequence [cf., Ref. 7]:

0| Ulw, s]| 0y* =<0| U[- w, s]| 0), (35)

which when combined with (29) [and (30)] leads to the
relation

O} Ulw**, - 5110y =(o| Ulw, s]] 0. (36)

On expanding both sides of this expression to lowest
order in s, one finds that

(w] k(x, 9)[0) = [wix, w) du {w |6 (ws(y)| 0, (37)
and after a further manipulation it follows that
(] x(x, y) | w"

= [ [w(x, w) + w'(x, )] dulw| pw) ¢ (y)] w". (38)

This expression determines the matrix element of
k(x,y) in the even subspace. Note that

(wl oo ly) | w (39)

is just a functional of the difference variable w'(x, y)
- w(x,y). In fact, this functional is nothing but

)

mE(v), (40)

evaluated for v(x, y) =w'(x,y) - w(x, y).

E. Dynamical considerations

As standard we assume the Hamiltonian formally ap-
pears like

H =% [ 7*(x) dx +w (o). (41)

Traditionally one exploits the relation
i, px) ] =7(x) (42)

based on the CCR, but in view of anticipated domain
difficulties we prefer to avoid the use of operator 7 in
isolation. Instead we appeal to the formal relation

ilH, o@o ¥ =1@ P (y) + d @ 7(y)
=1 o (y) + o (y)7(x)}

+H{1(y) o (x) + ¢ x)(y)}, (43)
and we take the conclusion of this exercise, namely
ilt, 6 ¢ (y)]= x(x, y) + kly, x), (44)

as our dynamical replacement for (42). Here is a rela-
tion among self-adjoint fields that respects the imposi-
tion of Dirichlet boundary conditions.

Because of the dependence of (39) only on w’ ~ w,
a relation for the matrix elements of #/ is readily ob-

1715 J. Math. Phys., Vol. 18, No. 9, September 1977

tained. As usual we assume #/10) =0 and /> 0. The
stated conditions uniquely imply that

(w|H | w”
= wa(u, ' (t, v){w| p(w o (v) | " dt dudy, (45)

which, besides filling the desired spectral conditions,
satisfies (44) as may be seen on examining

5 5 )
<6w(x, v y)) Gwlt [
=i+, 6@y w? (46)

and using (38) [always remembering that w(x, y) is sym-
metric in its arguments]. Thus (45) fixes the matrix
elements of the Hamiltonian in the even subspace.

F. The even subspace has got it all

It is not difficult to see that in fact the matrix ele-
ments of the Hamiltonian in the even subspace actually
determine the general matrix elements. For, ina
Schridinger-like representation, there is a dense set
of smooth elements ¥,(¢) =¥,(- ¢) in the even subspace
with support away from (fy, ¢) =0 to which there cor-
responds a dense set of smooth elements ¥ (¢)
=sgn(fy, P)¥,(¢) = - V(- ¢) in the odd subspace, where
fu=/fo(x) is an arbitrary but fixed, nonzero test function.
Since the Hamiltonian involves only a finite number of
derivatives (thus making no finite shift) and maps the
even (odd) subspace into itself, it follows that

by [H W =(w, |4 |9 (47)

and
(Tol#i |2y =0 (48)

for arbitrary elements ¥, (or ¥,) and ¥; (or ¥{) of the
dense set. Closure does the rest.!* A completely paral-
lel argument can be used to determine the general
matrix elements of k(x,y).

The relations derived above for the matrix elements
of the Hamiltonian, etc., for an affine formulation are
analogous to those derived by Araki’ for a canonical
formulation. In our discussion we have only used the
momentum operator 7(x) as a heuristic guide, and we
have not relied on it in our basic results in any way.

G. Conjugate momentum—No

In fact, one can extract from the foregoing narrative
a scenario in which the canonical momentum 7(x) never
appears. In this case one supposes that the field ¢ (x)
and the affine field «(x,y), which satisfies (22), are
basic, and that they are related to the Hamiltonian ~
through (44), The rest of the scenario is basically un-
changed: The functional E(f) in (33) uniquely determines
the functional E(w) in (34); A total set of even matrix
elements of k(x,y) and // can be expressed in terms of
the functional £(w), granting only that the ground state
of # is time-reversal invariant; and for an even time-
reversal invariant ground state, £(w) uniquely fixes
E(f), and general matrix elements of k(x,y) and / are
determined.

The elimination of the conjugate momentum 7(x) in
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the description is of great value when the nature of
7(x) is uncertain. Moreover, there are models for
which the conjugate momentum exists as no more than
a form.

H. Conjugate momentum—Yes

This next paragraph is in the nature of a remark.
While we have been doing our best to convince the read-
er that the affine formulation can do without 7(x), the
preceding development is fully consistent with the ex-
istence of a self-adjoint local field 7(x). A case in point
is the free relativistic scalar field of mass m for which
the expectation functional (33) reads

Ey(p =expl-+ [ (B2 +m»1 2| F (W) |2 dk}
= [ expli(f, o) diy(¢). (49)

1t is known that the measure iy(¢) is equivalent to it-
self under translation, K¢ +A)~ (o), for A such that
J(R2 + m®)/21A(k) |2dk <=. This equivalence guarantees
the existence of the canonical field 7(x) and the CCR.
But this particular measure is also known to be equi-
valent to itself under certain homogeneous transforma-
tions, Wo(¢ + Tp) ~io(e), provided (1+ T is bounded
and T is sufficiently smooth, namely if

J1T(k, |2 adicdq <=, (50)

where T(k, q) is the kernel of T in momentum space.®
This equivalence guarantees the existence of the affine
field «(x,y) and the ACR in the general sense we have
discussed in this section up to the present. [The exis-
tence of x(x,y) can be traced from (27), (28), and re-
lated relations. ]

On the other hand, strictly local field scaling, ¢(x)
- S(x)¢(x), S(x) >0, falls outside the class of homo-
geneous transformations covered by (50) [provided
S(x)#1], and it is known that p,(¢) is not equivalent to
itself after such a transformation.

l. Affine fields: Special case

Based on the analysis up to this point, we now begin
to discuss affine fields that lead to local field scaling.
We first observe that we can restrict (22), (23), and
(24) to x{x,x), i.e., to equal arguments, without any
formal difficulty. Specifically, if we set

k(x) = k(x, %), (51)

then (22) implies

[k(x), k(y)]=0 (52)
while (23) and (24) become
[k(x), p(w)] == ib(x - w)o(w) (53)

and
[kx), p)p(W)] =~ i[6(x - v) + 6(x ~ v) I (WS (V),
(54)

respectively. A Lie algebra structure of these relations
is apparent; and indeed, one can say that the new Lie
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algebras (52)~(54) are subalgebras of the previous Lie
algebras (22)—(24).

To see how such a subalgebra can be extracted con-
sider the generator

[s(x, y)k(x, y) dxdy (55)

that enters (25) and (26). Let attention be restricted to
only special s, namely those of the form

s{x, y) =s(X)6(x - ), (56)

in which case (55) becomes
f§(x)i<(x) ax. (51

More properly, the transition to (57) arises through
consideration of a sequence of functions s;(x,y) that
converge to §(x)6(x—y)as j~.

An immediate and important property of the so de-
rived subgroup of operators pertains to homogeneous
field transformations. For it follows from (27) and
(28) that

expli [ $(y)k(y) dylo (x) expl~ i [ §(y)«(y) dy]
=S(x)p(x), (58)

where S(x) = exp[§(x)]. Consequently, when this type of
singular subgroup extraction works properly, it leads
to the local field scaling of interest.

The usefulness of the kind of subgroup extraction
we have in mind here is highly representation de-.
pendent, In particular, it is necessary that the rep-
resentation of the affine field k(x,y) admit a sequence
of smearing functions s;(x, y) that weakly converges to
$(x)8(x - y) and in addition yields a meaningful operator.
This is not always the case, and fails to be true for the
representation built on the free field as characterized
by (49).

To examine this convergence question in detail one
can study the functional

E(w, s)={0| Ulw, ]| 0) (59)

that determines the representation of U uniquely up to
unitary equivalence. Consider a sequence s;(x, y) that
converges to 3(x)6(x - y), and evaluate the limiting form
of £; namely introduce

E(r, §) =1im EQw, s;). (60)

g

For the general case this limit will vanish, and thus be
of no use to us; however, if E(w, §) is nonvanishing for
sufficiently many functions 1(x,y) and 3(x), and has
reasonable continuity properties, then we have obtained
a useful subgroup extraction. The expression E(u, 3)
uniquely characterizes the relevant affine subgroup up
to unitary equivalence.

An exercise similar to that in (60) can be carried
through for E(, ) =(0| U[f, s1/0) to determine E(/, 3,
and the resultant expression can be given a compara-
tively simple integral representation. Namely,
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E(f, 5)=(0| expli¢(H]expl- ik(s)]] 0)

-1 1/2
:/exp[i(f, ¢)](ddif@f—)) du(g), (61)

where S(x) = exp[§(x)], and where we have used a stand-
ard notation for smeared fields. This relation is evi-
dently similar to (14), except that the present case
deals with the sharp-time local field operators «(x) and
¢(x). It is reasonable to assume that every representa-
tion of the special affine fields (x) and ¢(x) arises as
the subalgebra (for x=y) of some representation of the
general affine fields k(x,y) and ¢(x).

J. Dynamics reconsidered

The kinematical operator k(x) singled out above leads
to important consequences for dynamics. In showing
this we proceed in a formal and heuristic fashion. Ob-
serve that

k(x) = z[1(@) ¢ (%) + d(x)7(x)]

= ¢ {x)1(x) + (c-number), (62)
where in addition 7(x) = ¢(x) according to (42).
Therefore,

k(x) = 0 (X)) ®) + d(x)(X); (63)

on the other hand, with the presumed form for Hlef.,
(17)], it follows that

f@) =ilH, kx)] = 0 ®dx) + Hx) T2 (x)
- P ()b (x) - 42 () H3(x). (64)
Here we have made use of the formal relation
[k(x), m(y)]=i6(x - y)7(y) (65)

in addition to (53). On equating these two expressions
for k(x), it follows that

¢(X) [Q@(X) + mzqﬁ (X) + 4A¢3(X)] -0, (66)
where U= a% _ V2.

At this point, we introduce ¢{x) =& (x, ) and rewrite
(66) as an equation valid for all time, namely

Lo (x) + mPo(x) +4r¢3(x) 1= 0; (67)

this relation is the form taken by the equation of motion
in the present context.

K. Connection to earlier work

Equation (67) is important for several reasons. First
of all, this relation bears a close resemblance to the
conventional equation of motion (the brackets alone),
and since ¢(x} almost never vanishes (67) could even be
accepted, at least formally, as a substitute for the con-
ventional equation of motion. Having said this, it must
also be realized that (67) is not as simple as it looks.
If, as we expect,® nontrivial multiplicative renormali-
zations are entailed in defining the local products, then
one simply cannot “chip off” the factor ¢(x) to recover
the conventional field equation. This would be true if
the first factor read ¢(y), i.e., was evaluated at an-
other, independent point, but that is just not the case.
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Second of all, and this is a very important point, (67)
represents the operator form of the equation of motion
implicit in the functional differential equation for the
generating functional of time-ordered Green’s functions
for a quartic self-interacting augmented scalar field as
presented in Eq. (14) of Ref. 3.® Equation (67) thus
provides the all-important connection between the oper-
ator formalism discussed in this paper and the func-
tional approaches treated in Refs. 2 and 3.

L. Other Poincare group generators

Besides (45), which expresses certain matrix ele-
ments of the Hamiltonian in terms of the functional
E(w) and known operations, analogous expressions can
be given for the other Poincaré-group generators. In
particular, the space-translation generator P is deter-
mined from the relation

(wlexplia- P " = w| w) = E(w{ - w) (68)
where

wilx,y)=w' (x+a,y+a). (69)
Thus,

(70)

19
(w| P M)’)ZzTa—aE(%’;— w)

az0

In similar fashion matrix elements for the spatial ro-
tation generators j are determined from the relation

(o] exp® - w0 = ol wd) = B - w), (71)
where

wi(x, y) = w’(Rx, Ry) (72)
and

R= exp(iz . I:) (73)

with L the $(n - 1)(n - 2) conventional (defining repre-
sentation) generators of SO(n - 1) on R"*. Thus,

N 13 ,
w| Y|y ==—=E(wz—-w)| . (74)
u' 2 3b i B=0
In deriving these relations yse has been of the invari-
ance of 10), namely 10)=410)=0.

Both the spatial translation and rotation operators
are even operators, and consequently their general
matrix elements may be determined in the manner out-
lined above in the case of the Hamiltonian.

The case of the boost operators K is only a little
harder. From the conventional formal relation (at #=0)
that

K = [ xH (x) dx, (75)

where /(x) is the Hamiltonian density, !"

analogy to (44), that we should adopt
ilK, @ ¢(y)]=xx(x, y) +ykly, x) (76)

as the suitably basic commutator. And, using (38) just
as we did to derive (45) for the Hamiltonian, it follows

it follows, in
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that
(w]K | w? :wa(u, thitw'(t, v)

X(w| ¢ (v) |w” dtdudy. (77

In deriving this relation we have also assumed that

Kloy=0.

As with all the other generators, K is an even oper-
ator and thus there is sufficient information to obtain
general matrix elements of the boost operators.

tv. SUMMARY

The program to study augmented model field theories
had its inception in the unsatisfactory handling of sin-
gular, nonrenormalizable interactions in the convention-
al formalism. This paper complements our previous
functional approaches to these models through the use
here of operator techniques. Motivation for our non-
canonical analysis comes directly from the nature of the
singular interactions themselves and a desire to pre-
serve any boundary conditions they may impose, such
as in (18). In consequence, our formulation for aug-
mented models avoids the use of the canonical momen-
tum 7(x), which cannot generate configuration-space
translations when none are allowed. Instead we employ
the affine field «(x, y) which induces homogeneous trans-
formations on the configuration space thus preserving
any boundary conditions that may be present. Of course,
the affine fields «(x,y) and ¢(x), which obey the ACR
given in (22} and {23), are not necessarily inconsistent
with the existence of a self-adjoint local field 7(x), par-
ticularly for less singular models where no special
boundary conditions exist. But the important point is
that the affine fields do not require the canonical mo-
mentum 7(x). This seems especially significant when
the general affine fields «(X,y) and ¢(x) admit a bona
fide representation of the special affine fields K(x)

[= k(x, x)] and ¢(x), which satisfy (53), for then the ex-
istence of a canonical momentum 7(x) in such cases is
seriously cast in doubt. And it is just such affine field
representations that are fundamental, for then local
field scaling ¢(x) -~ S(x)¢(x), S(x) >0, which is seemingly
so basic to augmented models, is in fact unitarily im-
plementable.

The difficulties with 7(x) pose potential problems for
conventional canonical dynamical formulations as well.
The meaning of the conventional relation (42) becomes
dubious, and as an alternative basic dynamical state-
ment we take (44) which does not compromise our con-
cern regarding boundary conditions. An analogously
save formula (76) applies for the boost generators of
the Poincaré group.

Once the proper kinematical variables and basic
dynamical statements have been identified, there are
several ways to proceed. None of the foregoing was
particularly special to a quartic interaction, and for
the most part of our discussion in Sec. III we chose to
characterize the model by means of the expectation
functional E{w) for the field product ¢(x)¢(y), as speci-
fied in (34). With the aid of the basic relations identified
earlier, a total set of matrix elements in the even field
subspace for the operators k(x,y), /, and the other
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Poincaré-group generators could be expressed in terms
of E(w). The matrix elements for x(x) follow from (38)
for y =X, but such a relation may only define a form
unless the general affine field representation admits

a special affine field representation. It was pointed out
that for even Hamiltonians, such as a quartic self-
coupling, general matrix elements of all the basic op-
erators are determined, at least in principle. In es-
sence, then, the specific dynamics is fully contained

in the expectation functional E(w), which plays the role
in some sense of “model selector.” The analysis in this
form bears a close relationship to that of Araki, 7 which
was based on the canonical formalism.

Another approach to the dynamical equations is as
follows. We pointed out that for a quartic self-coupled
field the equation of motion for the special affine field
k(x) led to (67). The meaning of this equation can be
seen in another way. Let us adopt the not unfamiliar
expression

I= f{%[(aufﬁ)‘z - m2¢?) ~ X dx (78)

as the quantum action, and derive the equation of mo-
tion by a stationary principle under field variations of
the form

8 (x) = 6S(x) - ¢ (1), (79)

where 85(x) is arbitrary. Such a class of variations,

suggested by local scaling, respects the homogeneity
of field transformations and any boundary conditions

that may exist. The result of such a variational prin-
ciple is just

A ()5 (x) + m2p3(x) + 4ro*(x) =0, (80)

which is recognized as (67). Moreover, this is just the
operator equation of motion implicit in the functional
studies of Ref. 3, and it is our present view that a study
of this approach to dynamics is best carried out by a
study of the Green's functional or coupled Green's func-
tion equations as spelled out in Ref. 3.
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Froma (n+ 1)-form €2 on the manifold /KM of k-ets of local sections of the vector bundle (M.71,N) we
study the conditions to obtain the Lagrangian and Hamiltonian formalisms for a theory which involves
higher order derivatives. The results generalize those of Gallissot and others for A =1.

1. INTRODUCTION

The utilization of differential forms in mechanics,
see for example the books of Abraham,® Godbillon, 2
Souriau, * and Hermann, ? has allowed not only a more
rigorous formulation from the mathematical point of
view, but also a better understanding of its physical
content. Further, the use of the jets theory introduced
by Ehresmann® seems to be an adequated instrument
for the study of theories which involve higher order de-
rivatives, see, for example, Goldschmidt® and
Sniatycki.’

Recently, Goldschmidt and Sternberg, ® working on
intrinsic geometrical properties of variational calculus
(as for as we know, first studied by Dedecker® in 1953),
have obtained a sophisticated generalization of this
theory and in particular have generalized Lagrangian
and Hamiltonian equations of motion (these equations
had already been established by Gallissot® for a gen-
eralized continuous systems). Others authors, 7+1%1!
and particularly Krupka'? had already worked on the
subject, with different ideas. These generalizations
will be called generalizations of order 1, because they
have developped this theory on the manifold of 1-jets
of local sections of a vector bundle or more generally
of a fibered manifold.

The aim of this paper, following Mimura, '’ Gold-
schmidt and Sternberg, and others, is to study the con-
ditions to obtain the equations of motions of the k-gen-
eralized Lagrangian and Hamiltonian formalism. For
this, we consider a {(# + 1) form on the manifold J*M of
k-jets of local sections of the vector bundle (M, 7, N)
(M, N are C”-differentiable manifolds) from which it is
possible to establish the formalisms for a theory which
involves higher order derivatives. Concerning the
Hamiltonian formalism, we remark that the equations
obtained are those of De Donder, * Eq. (622). If the
Lagrangian and Hamiltonian functions are canonically
defined as integrals of the respective densities, we can
obtain equations formally similar to those obtained in
classical mechanics, where the usual derivatives will
be replaced by generalized formal functional deriva-
tives [see Definition 5 and Eqgs. (8) and (9) in Coelho de
Souza and Rodrigues?],

2. NOTATIONS

Throughout this paper it is assumed that all differ-
ential structures are of class C”. Let N, M be differ-
entiable manifolds of dimensions #n, m, (m>n), re-
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spectively, and (M, 7, N) a fibered manifold.'® We denote
by (J*M, 4%, N), for sake of brevity J°M, the fibered
manifold of k-jets of local sections of M, s* the k-jet

of a section s of M in x € N, §* :N—J*M the k-jet exten-
sion of s defined by $*(x) =s* and 7 : JFM ~J*M, (I <F),
7 :J*M —~ M, the projections defined by

¢k(§i) =X, TT?(S);) :;50

Let I(j) = (43, ...,%;) denote an ordered j-tuple of in-
tegers 1,...,n. I »<J*M, then we put locally »
- (xiv ya’ .v?(i))i where Ny = (Xl: DR} xn)y ﬂ'm - (.Vl; ceey ym)
are local coordinates for M on a local chart such that
(%1, .., x,) is the local coordinate on N induced by the
projection 7, and

(5% = s(x).

X

s®

" ]
Y (s () =m(:\) =S7¢5,(%),

§¥ =1v%os, l<jsh, 1s---<f,<--

i TS,

for any local section s of M. Let f be a function defined
on an open set in J*M such that its ¢* projection is in
the domain of the local coordinates (x;). The formal
devivative of f by x;, d;f is by definition

Aif =Dyyf + Do f =35 400+ L Du e Vi
sy
where, for the coordinate system (x;, v*, vf(;,) on J*M,
the symbols Dy;, ..., Duar@)e are used for the partial
derivative operators with respect to the variables
X3 0%, oo v, 4,- Now, consider the 1-form

d;f-dx;=Dy;fdx; + - +EDk,,z'”k)af-_v?‘(k)dxj, (1)

and, for brevity take =1, Then, developing (1), we
have

. of af - f .
d;f- dx; :T,)Z([xj + e Vg dx; +/_i/ Wﬁj dx;,

where v§ = 9y® /3x;, v§;=3v{/dx;. Taking the sum over
the j's and a’s, we get

;7:, d; f-dx; =df, (2)

where df denotes the differential of f.

Let V, W be two manifolds. By C” (V, W) we denote
the set of all C” mapping from V to W. If fc C*(V, W),
then by Tf: TV~ TW we denote the tangent mapping
(where TV, TW are the tangent bundles of V and W,
respectively).
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Let (M, m, N) be a vector bundle. By I'(N) we repre-
sent the C”(N)-module of local sections on M [here
C”(N) is the R-algebra of C”-functions on N]. Let
Ca(d*M, N) be the C™(J'M)-module of C“-mappings
FiJd*M —~M such that mof=¢*. I (s}, ..., s™ is a basis
of I'(N),, where V is a open subset on a local chart
(U, x;). Then there is a induced basis on Cg (J'M, N) ot 1y,
defined by F* =s* - 4*.

Now, we may consider (locally) a basis of
F(J‘M)wl,-l(v, as being formed by the n-local sections
(s*) of M and its 1-jets. If (x;, v¥, v$) are local coordi-
nates on J'M, we consider F* =s%. ¢!, F} =s%.y% as
being the elements of the induced basis on
Cyp(J2M, J*M) 42,1 ), and so on. For the general situa-
tion, we will say that F*, Ffu,, ..., Ff .1, is the basis
for Cg(J*M, J**M) induced by the local coordinates
(Xi, ya, 3’?(1)’ veey )’?(k)) on J"M. Letls F:fé(j)(F‘Ix(j))*’
[resp. 6=3;i,65,Fr,), where fat e C*(J*M), (F ;) *
is the dual basis of (F3(;)), [resp. (6f;,) are 1-forms
on J*M], with 0<j<k-1and F{,=F" [resp. 67,
= 6], Then we have F6=/."26%,,. We remark that
sometimes we put éx for the symbol d/0dx.

3. LAGRANGIAN EQUATIONS

Let (M, 7, N) be a vector bundle and z a point of JEM
(here and in the following we suppose that N is oriented).
If s is a section of M over a neighborhood of x = *(z),
consider the mapping

Ts* . T N~ T (J*'M),

where =7 _(z), s*'(x)=2. Consider also the following
difference:

Tt = TS* o Tk,
I XeT,(J*M), then'

(T4 = TS* o TYF),(X) € Ver T, (J* M), (3)

where Ver T,(J*"' M) denotes the vertical subspace of
T,(J**AM). Consider the mapping

Oey: 2 € M~ (Tm 4 - Tt oTU),(X)

€ Ver T, (A1),

Then we have a unique 1-form, which is also represent-
ed by 6,3, on J°M. This T(J*'M)-valued 1-form on
J*M is such that (X, Bixp is equal to the sum of the com-
ponents of (3), where X is a vector field on J*M (for
a proof of the unicity, see Ref. 6). We call 6, the
fundamental form on M. Let (x;, v*, v¥ays . ., Vi)
be a local coordinate system on J*M and

Grrar=Sa(F¥)* +- .. +]g(k)(F7(k))*

€ Cop (M, M) *,
Consider the mapping
Granq € Capn (T M, JFM)* — Fry € Cop(J2M, J*-2 M)*

H

where

d
Frey éflzl} SaOF* 4ot 75 fEO(FR G )¥,
e Iy
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then

_ I (1) I (k o
FiayOppy =22 FR6% 4o+ 25 FL® 05804,
ra) ra)

where 6, is the fundamental form on J*. Let w be a
volume form on N and w; =#(3x;)w, where i( )w denotes
the interior product. The (# +1)-form on J*M

Qe =dop,+pA w,

where

_ riy e ity ho
Oy =Sfal0 /\w,1+fa 6,.1/\w,2+--u

f1e0sip
tfa ooty N @i,
14
=fa 0y N i (4)

and p is a 1-form on J*M, is called generating fovm.

Proposition 1: Let u: N—J?M be a section of J2M
such that u =52, for some section s of (M, m, N). For all
vector fields X on J°M, (u)*(i(X)Qz,) =0 iff

24X FL @) qox fLO gkl — g, (5a)
i
224w fEO) L y*xU, =0, (5b)
i
wefE® _ ekl ® =, (5¢)

where «* is the pullback mapping and U9’ are the com-
ponent functions of p.

Proof: Let (x;, v*, vfa,, Vi (z)) e the local coordinates
on J2M

X=X, 0%, + X, 09" +XIV 0yfq, + X @ 3325,
a vector field on J2M (to simplify the calculus, we will
take X; =X, =---=XI"® =1 throughout the proof),
w=dx'A ««. A dx", [resp. (%) w=w,],

a volume form on N [resp. the contraction of w by ax,]
and

p=U;dx' + Uy dy* + ULV dyf + UL® dy2,,,
an arbitrary 1-form on J2M.
Then (3) is

(T7f = Ts' o TYA)(X) = (1 = pfy,) 9v®* + (1 - Vi) ay

which gives rise to the 1-forms

[ o o .
Oy =V gy = Vi dx;, 1<j<2

3[21 =2 9?(:’-1>

+

so, we have

g IG I
Aoy =dfS DN 64,0 w;, +fa a6, A w;,
_ eIl 1
=df' Y A dyfa, A w;, —fa P dyiy A w,
since, by (2)

Y e DN w=3yF (D d fED dx,) A w=0,
kR
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After some calculations, we have

Wi (X) Qppq =1k (dops, + 0 A W)(X)

E{[d (e FL @) yxflI D _ ke ]( amz 1)

J i

oy
* p L)y * _
+du* £I) = ux U, ](axi 1)

oy
+[u*f;<2>_u*U;<2>J<—4J~a§_2 “1)bw
i

which gives the desired result.

From Eq. (5b) we have the Egs. (5a) and (5¢) in the

following forms:

)

24 dydy, (eexf1 @) -Z,d,-l(u* Ut 4 uxvU, =0
iy,i i1
wefI @ kgl — g, (5"

for / e C*(J°M) (which is true
then the equations (5') takes the classical form

5 () B () e o

ig, iy ey A \OVG s ) T A \ vy ay

Suppose now that p=d/ ,
locally);

or, since Proposition 1 is true for % >
situation we have

irene oy iy

+ (- 1)_.1(1;1 (8[_m >+ a[‘a:O,

i ) oy

2, for the general

which are the Euley— Lagvange equations for a field
theory with Lagrangian density / depending on field
derivatives of higher order.*

4. THE VARIATIONAL FORMALISM

Let N be an oriented manifold, A N a compact, s
a section of M over a neighborhood of A, and u=5",
Consider the n-form o, over J* defined by

0, =0t [ w,
where / ¢ C*(J*M). If (s, an arbitrary smooth one-
parameter family of sections on J*M such that s,=s

and s, =5 on 34, for all{; then s is a extremal of I,

if
%IA(S) \ t=0=0, (6)
where
:fA ko, . (N
Now, !7
df“'a t=0~u*(z )do, ) +du*(i(X)a, ),

where X is an arbitrary'® vector field on N with supp
XCAY. From (6), (7), and Stoke's theorem,

fA w(i(X)do, ) =0
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Since this last equality holds for all X with supp X< A",
we conclude that on A’

w*(i(X) do, Y =u*({(X)Q,y) =0,

which gives the following.

Proposition 2: With the notations above,
tremal of 1,(s) if and only if «*(F(X)Qq,;) =
vector fields X on N with supp X< A°,

u# is an ex-
0, for all

5. THE HAMILTONIAN EQUATIONS

Let (Y, 71, N) be a fibered manifold over N, where
dimY = (2 +m +nm), dimN=n. Let/ ¢ C°°(J1Y) and
consider the mapping

A, 1Y = TNG , V¥(Y)

defined by A, (p) =d/ , (d means the fiber derivative).

A, 1is called the Legendre transformation, and is said
to be an Hamilton—Lagrange duality (H—1D) if it is a
diffeomorphism. In the following A, is considered

H- 1D locally.

Let 6, be the fundamental form on J*M and con-
sider the following linear combination, (ef. Sec. 3)

def

Py = Z/ PRBE oot 25 pi® (FF e ))*

Iy
Then, locally, the generating form may be put in the
form

Qm~>‘ A[(Pr1000) w, T+pn @

Wy - 04w

=dpe' A dvi i, ;

where
®=d(pLIvg ;) - p.
Put
=d/,
Ho=phine, 1, (8)

o= -fw,

where

T{j s
A=fRYAvE A Wi,
Then
®:(bL/, Q[k]::doﬁ .

Now, consider » =2 and define

ray __dL o d AL

o o« B
dvra, izd“iz

3

F 2

rey AL

T dvie’
and let (v, v*, z%) be a local coordinate system on an
open subset U of ¥, (x', 1%, 2§q,, 47(,) the induced co-
ordinates on (7)™ (U). If we take Y =J'M, A, H—LD
locally, then we may consider (v, v* 7 (1,,/)’ W pien
as coordinates on an open subset of ( ™Y v). 1t is clear
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that if X is such that u*(i(X) dof?)) =0, then, by (9) and
(5”), the integral curves of X are solutions of the gen-
evalized Hamilton’s equations

H 3L —~ d ,ra)
aya—_aya—"%lldxil(pa ):

a)L/ (<3 d o

T =Yra) = %),
apa ) @) dxi‘

oH vy __dL 5 a 12))
A izdxiz(pa ’

H o __d .
W—J’uz) dxia Oray)-

To generalize this situation (i.e., &> 2), we remark
that there is a mapping which permits the identification
of J*M with a manifold regularly immersed in J*(J*"*M),
and so we may consider A, defined on J*M, Then we
will get the equations

a’j -5 d (L)
- [ b
3Vr (5-1) 5 dxg (10)
a

d
aplaﬂ) :dxij (y}z(i-l));

for1<j<k, k>2.

6. THE GENERALIZED CLASSICAL MECHANICS

Following the results in symplectic mechanics sys-
tematized in the literature, 1-3 it is found that the
Lagrangian, respectively Hamiltonian, formalism can
be characterized by geometric structures canonically
associated to the tangent (velocities space), respective-
ly cotangent (phase space), bundle of a differentiable
manifold (configuration space). Concerning the Lagran-
gian point of view, Klein'® showed that special struc-
tures are necessary like the almost symplectic forms
and a special exterior differential calculus character-
ized by an endomorphism over the double tangent bundle,
called almost tangent stvuctuve (in the Hamiltonian
formalism, the symplectic structure over the cotangent
bundle and the usual exterior calculus are sufficient).
Recentlyzo the author has studied some aspects of the
theory for a generalized velocities space and showed
that in this case the structures are not canonically in-
duced by the usual ones. It was proved that for this type
of mechanics, which we call generalized mechanics, a
new structure, called almost horizontal symplectic
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subordinated to some hypothesis, is necessary for the
development of the theory.

To develop a generalized classical mechanics from
the present geometrical formalism, it is sufficient to
consider the trivial bundle (RXM, 7, R). Then we may
identify J*(R X M) with the manifold of k-jets of mappings
of R into M. Let 7,M be the k-jets of nonconstant map-
pings with source O € R. A natural #-jet chart on
(.M, 4%, R) is then (¢, gy, Ja, « . ., a&’), where ¢’ =(d’/
dt)(g,). It is clear now that it is possible to describe
a system of mechanics including higher time derivatives
of the coordinates ¢, (f). So, the introduction of higher
derivatives into Lagrangian and Hamiltonian formalism
seems to be not only an increase of a great number of
coordinates.
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By using Abel’s integral equations, we solve dual series equations involving Konhauser’s biorthogonal

polynomial set of the first kind.

1. INTRODUCTION

Spencer and Fano! introduced a certain pair of bi-
orthogonal polynomial sets in carrying out calculations
involving the penetration of gamma rays through matter.
They did not establish any general properties of bi-
orthogonal polynomial sets but essentially utilized bi-
orthogonality of polynomials in x and polynomials in x*
with respect to the weight function x* exp(~ x), (a > 0)
over the interval (0, ). A general foundation for the
theory of biorthogonal polynomials was established by
Konhauser.® As an application of his general theory he
introduced two polynomial sets (related to Laguerre
polynomials) which are biorthogonal with respect to
x% exp(— x) over the interval (0, «). Incidently his poly~
nomials give as particular cases the biorthogonal sets
of Spencer and Fano! and also the biorthogonal sets
considered by Preiser.?

The technique of dual series equations is frequently
used to solve mixed boundary value problems of poten-
tial theory. For instance, suppose we wish to find the
axisymmetric solution V{p,z} of Laplace’s equation in
the semi-infinite cylinder 0 sp <a, z =0 satisfying the
boundary counditions:

Vip,z2)—~0 asz— =,
Via,z)=0,
V{p, 0} =f(p),

z =0,
0sp<l,
and

{av/3z},.0=0, 1<p<a.

Konhauser* studied the biorthogonal polynomial sets
{Z%(x; k)} and {¥%(x; &)} which are biorthogonal over the
interval (0, <) with respect to the weight function
x®* exp(— x), (@ >- 1), The polynomial Z5(x;k) is of
degree n in x* and the polynomial Y§(x; %) is of degree
nin x for n=0,1,2, «+-. In fact Konhauser stated that

Zﬁ(x;k):r—————(k"+?l+l)
.
n ki
X (e 1) ;
;g( 1)<j)1"(kj+a+1)’ (1.1)
and
Yilx; k) = k‘ —g—t;
exp(— x£){t +1)%**" /
X . 1.2
{(t”"+Iet”'2+---+k)"+1 £=0 1.2
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For k=1, both these polynomials reduce to the gen-
eralized Laguerre polynomial L5(x). We shall hence
afterwards call {Z%(x; #)} the Konhauser biorthogonal
set of the first kind and {Y%(x; %)} the Konhauser bi-
orthogonal set of the second kind.

In this paper we solve dual series equations involving
the biorthogonal polynomial set {Z%(x; %)}. The method
which we use is a simple and direct method in which
Abel’s integral equations are involved. The solution
of the problem follows by using biorthogonal polynom-
ial sets of first and second kind and the known solutions
of Abel’s integral equations. Our approach is formal.
We have also obtained a new property of Z {x; k) which
was required in the course of our investigation,

Karande and Thakare® have solved similar dual series
equations involving the Konhauser biorthogonal poly-
nomial set of the first kind by using the multiplying fac-
tor technique due to Noble.® The dual series equations
considered by Saxena, Sethi, and Bamerji7 are as
follows:
> A

T{n~gq) +{a+q+1)/k}

n=0
XYx; k) =flx}, 0sx<b,
and
w A,
Zg Tl +B-q) +(a +q)/k}
XZH(x;R)=g(x), b<x<eo,

where

Lf_l:_l_)(l_l_;-_ﬁ)i‘i_+3+1:>3>1—m,

_qk—1)
w1z 1

-+a+8>0,
% and m are positive integers and f{x) and g(x) are pre-
scribed functions.

In this connection we also recall similar work of
Thakare®®, Patil,!" H.M. Srivastava, " K. N,
Srivastava,!® R, P. Srivastava, *~'® Lowndes, ' and
Askey. 18 Note that for k=1 we get as particular cases
the results of'!=1%1!7 gfter adjusting the constants
appropriately.

In the present paper we solve dual series equations
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of the form:
> . n gbe28-1(,.. _ <y <
D rrre ey A e =), 05x<y, (L)
and
i - Z8(x; k) =g(x), y<x<w
n\4, = s s

w0 D(O+B+1+En)

where >0, 6> -1, f(x), and g(x) are known functions
and the 4, are unknown constants which are to be
determined.

2. RESULTS REQUIRED IN THE COURSE OF THE
ANALYSIS

We require the biorthogonal property of the Konhauser
biorthogonal polynomials (Konhauser?)

j:)w exp(—x)xZ%x; k) Yo (x; k) dx =0,

=T(1+6+km)/n!,

if m#n,
if m =n, 2.1)

where 5>~ 1 and {Y? (¥; )} is the Konhauser biortho-
gonal set of second kind.

The second formula required is the Weyl integral
stated by Karande and Thakare®

f: exp(~

=T'(B) exp(-

x)(x — EP1Z2B(x; k) dx

E)Z3(k; k), (2.2)
where >0, 6+1>8,
The third result that we require is
d
2 / (£ — x)P-1x5EZ5%8(x; k) dx
dt J,

TRT(5+B+1 +kn) " oy
I'(56+2B +kn) "

where §+28>0, >0, 6>-1.

(2.3)

(£; k),

We have the Riemann— Liouville fractional integral
(see Erdelyi!®) given by Prabhakar?®

4
f xNE = %P2 s k) dx
0

T3 +B+1+En)T(B)E2PZ2(t; )
- T'(1+56+2B+kn) ’

where 8>0, 56+1>0,

(2. 4)

Incidentally we shall give the proof of the result (2. 3).
Differentiating both sides of (2.4) w.r.t. ¢ and using the
result [Konhauser,* (8), p. 306]

{Z“ (&R == REIZER(E; ),

we get

d 4
EE‘/O‘ (E_x)B-IxmBZS»B(x; k)dx

L(6+B8+1+kn)L(B) £o26-1
(1 +06+28+kn)

X0 +2B)Z7%(5; k) - REZRI*(&; )
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Now using the pure recurrence relation for Z§(x; k)
obtained by Karande and Thakare®
- BX*ZE (s k) = (bn + @)Z2  (x; R) — aZ2(x; k),
the proof of (2. 3) is complete.

If (&) and f’(£) are continuous in 0 sx <% and if
0<B<1, then the solutions of the Abel integral
equations

_[f Fx)
f1(£)a./0‘ (g—_?)zrd% {2.5)
and
[T Flx)
o= e, (2.6)
are given by
e - ACEr S CL (2.7
and
Fo) == 22D L (7 ey e, (2.8)
respectively,
3. SOLUTION OF THE EQUATIONS
From (2.3) and (1. 3) we get
d 1 o A 48/ )
qe ), Gt D e s
B)‘Aﬂ +, o + - -
nzgm EOH28-1 784281 (£ - 1)
=T(8) "2 11(¢).
Hence
i———A f (£ = x)B1xB*8Z0%8(x - by dx
w0 DO +B+1+kn) di S
=D(B)£**11(¢). (3.1)
Similarly from (2.2) and (1.4), we get
?Fﬁm/‘m expl(— x)}(x — £P1 258 (x; kY dx
=T'(B) exp(— &) g(£). (3.2)
Let
Sy =x"p (x), (3.3)
where
Y= i Ay Z5B(x; ). (3.4)

T({GE+B+1+kn)

Multiplying both sides of (3.3) by (§—x)* and inte-
grating w.r.t. x over (0, £) and then differentiating
w.r.t. &

d ¢ _
E./o. (E=x)P fi () dx ===
Now using (2. 7) and (3. 1) we get

4
B - x)Fp(x) dx.

F(&)= T(B)£5*28-11(¢).

sin(Bw)
™
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Again dividing both sides of (3.5) by (v — £)?, inte-
grating w.r.t. £ over (0,x) and then using (2. 5)

Filx) =x"*p(x)
__sin(Bn) * ghB-Apg)
= T(B)fo Wdﬁ. (3.6)
Let
Falx) = exp(— x)p(x), (3.7

where p(x) is given by (3. 4),

Similarly, multiplying both sides of (3.7) by (x — £)*!,
and integrating w.r.t. x over (£, «) and differentiating
w.r.t. & we get

sm({a’ﬂ) (3.8)

Fo{f) =— T(B) (exp(— £)g(E).
Dividing both sides of (3.8) by (¢—x)?, integrating

w.r.t. £ over (x,*) and then using (2.6) we get

Frlx) =exp(—x)p(x)
__sin B‘n (@) = (d/dg) exgp x)) (£Nds
(3.9)
From (3.6) and (3.9) we write, respectively,
5.5 Sin(Bw)
p(x):x 6 B“W—P(B)
Xfx 56(1:6-15()%) de, 0<x<y, (3.10)
0 -

and

81n(B7r)

plx) == exp(+x)———=T(B)

of " ARSI 4y <y<n, .11

The left-hand sides of (3.10) and (3.11) are identical
hence multiplying both by 5% exp(— x) Y5*(x; &), inte-
grating (3.10) w.r.t. x over (0,y), integrating (3.11)
w.r.t. x over (v, *), adding and using the orthogonality
relation (2.1), we get the solution of the dual series
equations (1.3) and (1.4) in the form:

A, _«EM I‘(B)/y exp{—x)Y3¥(x; k)

EMB"f sin(8m)
{f dg}dx n! - (g
X/ 6+Byb+B(x k)

{ o [ et o) dg} o

(3.12)
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T

A, =1 sinfn) r<6){/ " expl— ) Y32(x; &)
0

X f*(x) dx —f Pt SALIPH k)g*(x)dx}, (3.13)
v
with 8 +1>0, >0, where

X £5+28-1f(§)

fr=[ T ads
o* (x) = ® (d/dE)exp(= &) g(£)) dt

x (E—x)B

In particular, we note that for k=1, 8=3% we get the
dual series equations for §=—a considered by
Chaturvedi®! a paper which contains several mistakes.

Also if we put k=1 and A, =T +n+1)I'(G+p+1
+n)C, we get the dual series equations considered by
Lowndes, "
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The conditions for existence, boundedness, and stability are obtained for equatorial circular geodesics in
the Kerr-Newman geometry. These conditions are extensions of the Bardeen et al. conditions in the Kerr

geometry.

. INTRODUCTION

The circular geodesics in the vicinity of a black hole
are gaining significance owing to their interesting
astrophysical applications, in particular, the phenom-
enon of gravitational synchrotron radiation. 1= In gen-
eral relativity, circular geodesics of arbitrary radii
are not possible; there occurs a minimum radius (the
existence threshold) below which circular geodesics
cannot exist, The conditions for existence, bounded-
ness, and stability of circular geodesics have been
studied in the Schwarzschild,® the Nordstrdm®’ and the
Kerr®?® geometries. As far as we know, this has not
been considered in the Kerr—Newman geometry. 1® We
shall, in this paper, obtain these conditions for equa-
torial circular geodesics in the Kerr—Newman geom-
etry which will be extensions of the Bardeen et al®’
conditions in the Kerr geometry,

iIl. THE KERR-NEWMAN GEOMETRY

We shall take the Kerr—Newman metric as a generic
metric for a charged and rotating black hole. The
metric in the Boyer—Lindquist!? form is given by

2 : 29
dszz% d1’2+p2d92+s—1;r[adl—(T'z+02)d¢]2

A
- Ez(dt— asint0d¢)?, 1)
where
pt=7r'+alcos’®, A=1-2mr+at+el. (2)

Here the relativistic units are employed with G=c =1
and i, e, and a respectively stand for the mass, the
charge, and the specific rotation (angular momentum
per unit mass) of the black hole.

We shall consider motion in the equatorial plane
6 =n/2. The first integrals of motion are well known
and are as follows!!:

dr
&R, 3)
do a
rE=—@E-1)+ 5 P, (4)
%:—a(aE—L)*'VZZaz P, ®)
with
P=E(#+a*)-al, (6)
R=P*~ A[p** + (aE - L)), (7
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E is the energy, L is the angular momentum {(axial
component), {1 is the proper mass of the particle, and
X is the particle’s proper time per unit mass, 7/4,
and is an affine parameter for photons.

In the geometry described by Eq. (1), the ortho-

normal frames of locally nonrotating observers have

their basis 1-forms as!!:

- g2 1/2 “ s g
w=g,- g‘i dt, w®=(g,,)"? (dcf>+§iﬂL dt) ,
]

X

&

p

wF: (m dI‘, w§:p deé. (8)

Equation (3) would read in the explicit form as

(;-T) i =§='r"2{[(72+c12)2—-(12A]E2

~2a(* +a* - D) EL+ (a* - ) L* — 1?ar?),
9)

The physically accessible and acceptable values of E
lie above Ey,, for a given L at a given » with the re-
quirement R(»}> 0, We obtain from Eq. (9)

Epya=1aL@my - e*) + val/ (212
+ [+ a¥) + @@y - D) p Y
x [P0+ a?) + a2 @mv ~ )], (19)

Here as v -, E_, /i —~1. For stable bound circular
orbits Eg;, () is minimum and for unstable unbound cir-
cular orbits (unbound in the sense of Wilkins, 1 E/p > 1)
E,, is maximum, For some particular value of E,
orbit of the particle is such that E> E_; with the turn-
ing points at E=E_, . E.; is essentially the threshold
energy for a given 7.

For retrograde orbits al <0, E_;, could become
negative when 7 is close to the event horizon. In this
region, particles having positive energy in the local
observer’s frame can have negative energy relative
to infinity; their gravitational binding energy exceeds
their rest mass energy. Such a region lying between
the event horizon & =0 and g,,;> 0 is called the ergo-
sphere and existence of the ergosphere is the prime
requirement for the possibility of energy extraction
from a black hole by the Penrose process, 1*

For a photon, u =0, Eq. (10) simplifies to

Al 2y q(2mr - e?) >

B =21 <1’2(72 +a) +d*(2my - %) (1)
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The upper sign is for the direct orbit L > 0 and the low-
er sign is for the retrograde orbit L < 0.

111. CIRCULAR GEODESICS

For circular orbits we must have R(»)=0 and R'(v)
=0 which yield after considerable algebraic
manipulation,

E_ ¥ = 2my + e x almy ~ e}/ 2 (12)
B w7 = 3mr+ 28+ 2a(mr — 0)V V2

and
L_, (my — eV 22 + a* 7 2almy — ¥V ] F ae® (13)
[T ¥[7? — 3mr + 2+ 2a(myr - )V ]2

Here again the upper sign is for the direct orbit (L > 0)
and the lower one is for the retrograde orbit (L < 0).

The angular velocity of the particle relative to in-
finity is given by
(mr ~ )/ 2

i almy — e )72 (14)

$ =+
The physical velocity of rotation relative to the locally

nonrotating observer’s frame specified by (8) would
read as

AW 2 + a3 2a0my - e}/ 2] 7 qe?
A2+ alny — D) ?]

(my — (15)

¢phys =

(i) Existence threshold

The existence threshold for circular orbits is given

by
2 Bmr+2et+ 2almy - eV 0 (16)

so as to have E and L real, The limiting case of equality
corresponds to a photon orbit. Let #,, be the smallest
root of Eq. (16). The existence condition for timelike
circular goedesics is > 7,,. The photon orbit with
radius ¥ =7%,, is the closest possible circular orbit to
the black hole.

(ii) Bound threshold

Not all circular orbits with v > »,, are bound; they
are bound geometrically but may be unbound in ener-
getics with E/u > 1, That is, when a particle having
E/u>1, is given an infinitesimal outward perturbation
then it escapes to infinity along an asymptotically
hyperbolic trajectory. } Such unbound circular orbits
would obviously be unstable.

For bound orbits we must have 1~ E/u = 0 which
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reads as follows:

2
a
(73/2 +2Vmr - Lo L (ur - 62)1/2)
v Vm

X (1’3/2 + 2V + e—,_z L (my — 92)1/2) = 0. a7
Ym 74

Let 7, be the smallest root of the above equation. 7,
is the radius of the marginally bound (parabolic) circu-
lar orbit which would be the closest bound orbit to the
black hole.

(iii) Stability threshold

The stability for orbits (not all bound orbits are
stable) further requires R”(») < 0. So we obtain

mrd — 4my — ) nr - e izxaf =0 (18)
which could equivalently be written as
- _E2> 2 m ela® (my—e¥)t/2Ji72 (19)
w3 7 T 32a - (@F (my - V]

Let 7, (the smallest root) be the radius of marginally
stable circular orbit, that would be the closest stable
orbit to the black hole.

One can easily see that all the conditions of Bardeen
et al.%? could be obtained by putting ¢ =0 in the above
relations. There one could fortunately manage to get
the conditions in the explicit terms which is not possible
here. Putting =0, we get the conditions for the
Nordstrom geometryﬁ'7 and putting both a=0, ¢=0,
the well-known conditions v = 3wz, » > 4m, and v = 6w
for existence, bound and stable orbits in the
Schwarzschild geometry® result.
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The Kirkwood-Salsburg equations for a bounded stable
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We derive for Kac potentials of the form y*y(Ax) an expansion, for all the distribution functions, in
powers of y* (s = dimension) and prove for z< Z,, that the expansion is at least asymptotic. The coefficients
in the expansion are shown to be solutions of linear operator equations similar to the Kirkwood-Salsburg
equation. We also explicitly obtain a rather simple expression for the coefficients of ¥* and show that they
are given by solving the Ornstein-Zernicke integral equation with the choice of —B{(y) for the direct

correlation function.

I. INTRODUCTION

In a previous paper! (subsequently referred to as
GK), we established that the classical m-particle dis-
tribution functions p,(Xi,...,X,) for z <z, reduce to

m
1 py(x;)
a1
in the limit y— 0, if a Kac potential of the form

@ (Xg9) = vP(¥x43)

is chosen with the hard core excluded. $(yx;;) is bound-
ed and integrable, and J;; P(yx;;) >~ mA, s is the di-
mension, and p,(X) is given by

p1(%;) =2z exp[- B rs £ %P1 (%) b)),

where z is the activity, Equation (1. 2) is known as the
Kirkwood—Monroe equation, 2

(1.1)

1.2)

This result, derived by Gates with a different meth-
od, ? establishes the mean field nature of the Kirkwood—
Monroe theory of melting. Mean field theories are well
known in statistical physics and many authors* have
attempted to systematically improve them. This is gen-
erally done by obtaining a formal expansion of some
quantity (i.e., free energy or pair distribution function)
in powers of y and establishing that the zeroth power
coefficient is the mean field result. Higher powers
would then be corrections, It is however generally
thought®? that these expansions in y are at best asymp-
totic and that to obtain useful information about v+ 0
would require resummation of the series. Unfortunate-
ly, these series are usually so complicated that it is
difficult to establish simple forms for the coefficients
and it is almost impossible to analyze convergence
properties much less resum the series,

In Sec. II of this paper we derive, in a rather simple
way, a formal expansion in powers of y° for all the dis-
tribution functions for systems with potentials of the
form (1.1) with #(yx)= 0, The coefficients of (%) are
seen to be solutions of sets of linear equations similar
in structure to the Kirkwood—Salsburg® equation,

We solve the equation for the coefficient of v and
thereby obtain an explicit form for the first order con-
tribution to all the distribution functions. The coeffi-
cient for p,(X{, X;) to order y* is seen to obey an
Ornstein—Zernicke® equation. (The details are present-
ed in Appendix A.) We then show that the 7° expansion
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is asymptotic to order y*, These results are anticipated
by the work of Lebowitz, Stell, and Baer’® who obtained,
nonrigorously, quite similar expressions for the more
complicated Kac potential plus hard core,

In Secs. III and IV we generalize the above results to
higher powers of 7* and to a class of nonpositive definite
potentials, respectively. The significance of these re-
sults and possible paths of future research are dis-
cussed in Sec. V,

I1. ASYMPTOTIC SOLUTION OF THE KIRKWOOD-
SALSBURG EQUATIONS TO FIRST ORDER IN
v* FOR NONNEGATIVE POTENTIALS

In this and the following section, we want to consider
a system of particles in s dimensions interacting via a
Kac potential ¢ (x,) =y"(¥xy3) with y= 0 and a nonnega-
tive bounded and integrable function ¥,

0sP(y) SA<w, Cp= [ dyp(p) <w, 2.1)

This pair-potential is regular, since the integral of the
absolute value of the Mayer function f(x ;)
= exp[- B¢ (x42)] -1, B=1/E5T is bounded,

C(B) = [ s x| fx)

All information about the system in equilibrium is con-~
tained in the set of m-particle distribution functions
Pm(Xy, ..., X,). The vector p(py,py,---) of these func-
tions obeys the Kirkwood—Salsburg (K—S) equations, °
which may be written in compact form as’

(2.2)

< BC <o,

({-zK)p=za, (2.3)

where [ is the unit operator, z is the activity, «
=(1,0,0,---) and K is the Kirkwood—sSalsburg opera-
tor, defined by

B@)p(®y, o on s Kp)
:[ﬁz @ +f(x“)):] <(1 = Oy 1) Pt (Xgy o o0y X))

%1
+}_l T f (pmwvl-l(x?!o-"xmﬂ)
i)

71 1!

m+}
x I [ fley) d‘x,]),, (2. 4)

Jam+l
K operates on the Banach space E, of vectors of func-
tions ¢ = (¢4, ¢y, - -+ ) where ¢, : R™— R is Lebesque
measurable and bounded, the norm in E, being
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folle=sup ( esssup  Afnlteees Tl x"‘)'>,
(Rrseor X)) S RS £

£>0fixed. (2.5)

The Kirkwood—Salsburg operator is bounded in the
operator norm which corresponds to this vector norm,

IR < /) expl£C(B)] =24(8, ¥, £, 7)™ @.6)

The bound can be made independent of y, since with
(2.2) we have z;' < (1/¢) exp[£6C,].

A formal expansion of the distribution functions in y*
can be obtained in the following way. It was shown in
GK that for z small enough (2. 3) could be solved by
iteration and that the solution p did not depend on the
positions of the particle but on y times the distance.

If we assume that the solution of (2, 3) has this form
for all z then we can expand all the Mayer functions
Sfle;;) in (2,4) in series in the variable B (x;;)
=y*Bd(yxy;), redefine our variables yx;; —v;;, and
equate powers of y°, We obtain, for the coefficient of
each power of +°, a linear operator equation to solve,
Before discussing the form of these equations it is
interesting to note that the simple form for this ex-
pansion in powers of y° instead of y comes from the
fact that we have no hard core or lattice constant to
impose another length scale on the problem, The only
length we must concern ourselves with is y"!. There-
fore, we can scale it away by a simple variable
transformation yx — v,

An expansion of the Kirkwood—=Salsburg operator K
in terms of y* by expanding the Mayer functions in (2. 4)
meets with serious difficulties because of the product
of [1+f(xy;)| factors. If we split K by setting

K=P.R,
Po)atmsy o) =] T 41| 0ntrsy -, 30,
ja2

2.7)

where R contains the rest of I:’, we see that the ex-
pansion coefficients of P are unbounded operators from
the first order on

ﬁ—’ﬁixi-l“ysgi,

(§1(p)m(xly s eo 9xm) [5’!’3 (’)/x1])] (pm(xly s ey xm)'

i=

X

(2.8)

Nevertheless, we will see that in this way one can get
an asymptotic expansion for the vector p of correlation
functions. An expansion of the rest operator R up to
the first order gives

:Qo+ '}’séu
(é0¢)m(xia aee 5xm)
=1~ 6 1) Ot (Bay oo o 5 Xy)

©
+E (Z—,B) /' (pm+l-n(x2’
12l H R s

m+l
x 1]

j=m+n

é"’ﬁl

-,xmﬂ)

[gb(yx“)ds(yx,)], 2.9)
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(é1¢)m(x17 o0y xm)

_ 1 m*
:—26 (Z'B) E f ¢m+l-1(x2,=°°:xm+t)
4 w}s

1=1 {am+i

m+l

I @mxy,) d°(vxy)).

j=m+l

XP(yxy;) (2.10)
The first order approximation to the Kirkwood—
Salsburg operator is therefore

K“K1:éo+75(§1éo+é1)u 2.11)
If we formally expand the solution p of (2.3) up to order
,}/S

p=p M =x D+, (2.12)

and collect terms of the same order in (2. 3), we get
two hierarchies which are the zeroth order approxima-
tion and its first-order correction to the Kirkwood—
Salsburg equations,

(7 -2Q)x P =za,
(- 2Q)x 1 =2(5,§, + §)x .

These two equations can be solved uniquely as long
as 1 is not an eigenvalue of the (bounded) operator
z@o‘, If we extend E, to complex-~valued functions and
z to the complex plane we have, for example, by
Neumann’s theorem that (I zQO) has a bounded inverse
as long as |z |||Q0|| <1 and the right-hand side of (2, 14)
is bounded which is the case for [z| <z;. However, it
shall be pointed out that this restriction may in general
be too strong. In fact, with our approach we obtain a
criterion which, although satisfied for all z smaller
than the bound found by Ruelle, " may be satisfied for
much larger z.

(2.13)
{2.14)

The zeroth order equation (2. 13) has been studied in
GK. It is equivalent—for small enough density—to the
Kirkwood—Monroe equation for the zeroth order one-
particle distribution function (density) x{» =z

n(xy) =2 exp[- B [ A%y (%) (¥ 12) . (2.15)

This can be shown easily by an ansatz of the form

m

T n(x;)
=t

for the hierarchy (2.13), In fact, for all z= 0 there is a
constant solution n of (2. 15) (n =z exp[~ ACn]) which
only depends on B3,z and not on y, since [rsd*%,¢ (xy;)
=C,. This n also determines, via (2,16), the unique
solution of (2,13) for 0<z gz(‘”" where z‘“) is defined
as the infimum of all positive z with 1/z belonging to
the spectrum of ¢,. The result, that this is also an
asymptotic solution to zeroth order in %° of the full
Kirkwood—Salsburg equations (2, 3) for 0 <2z <z;, has
already been proven in GK. An extension to perhaps

a larger range of z, namely

lo-xON, <+ 2||@- 2K - By(8, 9; £, 2),

~ . MFN .3
0 <z <min{z,,,2¥"}=2,,

X)Xy oo, Xp) = (2.16)

(2.17)

can be achieved by using the direct method, which is
presented in Appendix B for the first order case, Here
2., is the infimum of all positive z with 1/z belonging
to the spectrum of R,
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In order to solve the first order hierarchy (2,14) we
make an ansatz

(x(l))m(xi’ 2oy xm)
-[% n(x,>] S5 [v(xo T, xg],
j=1 i=1 i<k=m

where 7 is the relative first order correction to the
density and % is the first order correction to the two-
particle correlation function, It is shown in Appendix A
that the hierarchy (2.13), (2.14) reduces to the following
two integral equations for the functions » and 7:

h(Xy, %) == B (yx12) = B [ s 4 (v%)

(2.18)

X (%) P(vx19)h (X2, Xo), (2.19)
7(X,) = 3[R (X, X1) + B(0)]
B J s @° (VR0) n(Xg) Blyx10) 7 (3%y). (2. 20)

In the liquid phase 7 will be a constant and 7 will only
depend on the absolute distance between the particles,
h(x,, X;) =h(xy;). In this case the two equations can be
simplified,

R(%12) == BY(1¥12) = B [ s d® (YR )X ) 3y), (2.19")
¥=(1+nBC,)"t- 3[h(0) + Bx(0)]. (2. 20")

By (2.20"), v is directly given in terms of 2, From
(2.197) it is clear that % scales with y. Therefore, by
defining new variables y; = vX; and a scaled correlation
function £, (yx,;) = h(y,;) we have—instead of (2. 19)-—-t0
consider an equation which does not depend on y,

Ttg(¥12) == B vyp) — P fmsdsYoiP(ym) sel¥y).  (2.21)

The solution of (2.21) determines via (2. 20) and (2, 18)
the unique first-order correction x‘“ to the vector of
correlation functions in the range 0 <z <z'¥®, The full
first order approximation p? =yx'® + x(“ to the solu-
tion p of the Kirkwood—Salsburg equations (2. 3) is
asymptotic to first order in »°,

lo=p® <y 2] 0= 2Ky - By(8, 45 8, 2),

0=z<%z, (2.22)

This result is proven in Appendix B. In order to derive
this inequality for the maximal range of z, 0 <2z <z,
one has to choose

£2n,, (2. 22a)

in (2, 22) [and also for the corresponding result (2,17)].
Furthermore it is assumed that the functions » and &
are bounded in each interval [0,z] with z <Zz_,.°

with n,, =2z, exp(- BCn,,)

HI. ASYMPTOTIC SOLUTIONS OF THE KIRKWOOD-
SALSBURG EQUATIONS TO HIGHER ORDERS IN
v* FOR NONNEGATIVE POTENTIALS

The procedure of solving the Kirkwood—Salsburg
equations to first order in y° which has been developed
in the last section can be generalized to higher orders
in °. Expansion of the Mayer functions in the product
operator P and the rest operator R, defined in (2.7),
gives the approximation of these operators to the vth
order in %,

-~ L4 -~ -~ v ~
_'PV:E .)/ussu’ :Z) ‘yusQun

usd us=0

(3.1)
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It is easy to give the 5, explicitly,

(gu(p)m(xi) v oay xm)

l“ [ B E d)(?’xlj)] gDm(xl, v soy xm)’
3.2)

or gu = g{‘/u! .
They are unbounded operators for u> 1. To write down
the Q, in a short form, we use the identity f(x)

=(- ¢ () [gd7exp[- 7¢(x)] in the definition (2.4),
(2.7) of the rest operator R,

(éw)m(xb ooy xm)
= 5“’0(1 - 6m.1)(pm-1(x23 o e ,"7")

1 14
7‘ ( ) / D11 (x25 ey
1=1 - msx o, 1

m+} m+l
Xexp[ ¥ 2 T3 Vxlj)] T (Wlyxyy) d5(yx;) dy),

J=m+1 Jam+l

xm#l )

3.3)
Now the expansion in terms of ° is trivial and we obtain
(éu(p)m(xl’ ooy xm)

= 6u,0(1 - Gm,i)qom-i(x'Z) o e

-1)*
( ') f ¢m+1-1(x'2,=°°’xm+l)
s wmIsx 00, 87

m+l
[ E Ty qu)] K [z,[)(yx“ ds (’)’x;)dT]

» %)

(3.4)

From this explicit expression for the éu one can deduce
that
é = E .yusé us

u=0

0< y <o (3. 5)
is an operator-norm convergent series expansion of the
rest operator, and in particular that ||[R-R)]| —0

(v — =), The proof is concluded in the following way:
With use of the identity

o 8 [ da* (1% -
/ dTl"'/ drn[z 7] = B — ( )
0 ) o1 dx*\ =x

x=0
it is straightforward to show that
1 Ay d* "1
us o e &
CAE “, — 5 exp <£f301 ~ ) o 6.9

Apart from the factor 1/¢, the right-hand side of (3. 6)
is the (p +1)th term in the Taylor series of

exp[£BC; (¥~ 1)/x]| ,.pa,s around the point x =0. Clearly,
exp[£BC,(1* - 1)/x] is an analytic function at x =0, so
that the Taylor series converges. We have found in this
way a convergent majorant to 3., ¥**ll@,ll which proves
the proposition,

Expanding the solution p of the Kirkwood—Salsburg
equations in powers of y° up to the vth order

v
p_,p(v):Z‘/ Yusx(u), (307)
b=

one gets, by collecting terms of the same order in
(2.3), v+1 hierarchies which determine successively
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the zeroth-order solution and its 1st to vth order
corrections,

(- 2Q)x " =za,
- m - . (3.8)
I-2Q)x™ =2 2 ( 2 S.,QJ) XUV (Lspsw),

A=l \o+7=2
For all orders the operator on the left, I- zéo, remains
the same and only the inhomogeneous term on the
right-hand side changes. This means that the solution
of the hierarchies is always unique up to the same value
2P of the cativity, which is only determined by the
zeroth-order rest operator Q.

If one looks at the particular form of the solutions
(2. 16) and (2. 18) of the zeroth and the first-order
hierarchies, one is led to the idea that only correla-
tions involving not more than v +1 particles should
enter the solution of the vth order hierarchy. This is
physically clear, since a {nonseparable) correlation
between v +1 particles involves at least v interactions,
each of them giving a factor y° to the correlation func-
tion. One can check this assumption formally, for z
<z," by inspecting the hierarchies (3, 8). Since the
operator @, according to its definition (2. 9) [or (3.4)]
only involves correlations between particle 1 and
others, whose positions are integrated out, no new cor~
relations are created on the left-hand sides of the
hierarchies. Therefore, the degree of correlation in-
volved in a vector x(‘" is determined by the action of
the operators on the right-hand sides of the hierarchies
on the vectors y'*’ (1 =0,...,v- 1), which degree of
correlation has already been established in the v lower
hierarchies. It is especially clear that the zeroth order
hierarchy has an uncorrelated solution, since in the
circle |z} <z; we have by Neumann’s theorem x'©
=Y (2@;)'za, which remains an uncorrelated solution
after analytic continuation in z, In the higher hier-
archies correlations are now introduced successively
by the factors P(yxy;) appearing on the right-hand sides
of (3. 8) in the operators §c,. The number o of these fac~
tors and the order p —~ X of the vector x(“"" have a sum
not greater than the order p of the hierarchy. There-
fore, the assumption follows by induction,

It is clear now that for v> 1 we can make an ansatz
of the form

(X(V))m(xh vy xm)

:[I"nl n(x,)] . f‘, [of”’(xk1)+ b

(1)
i=1 Ry=t kilkg<m

(
Feeet 2 cp‘l}(xki,...,kai)]...] (v=1),

Rylorechy,qg=<m

(3.9)

for the solution of the vth order hierarchy, where o’
is the vth relative correction to the density, o is
the (v—1)th correction to the two-particle correlation
function—whose first (nonseparable) part is of first
order in y*—and so on, and finally 0] is the first
(nonseparable) part of the (v +1)-particle correlation

function.

Inserting (3. 9) into the vth-order hierarchy (3. 8),
with the use of the lower order hierarchies, leads to a
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system of v+ 1 linear integral equations for the func-
tions ¢{?,...,08). As coefficient the lower order cor-
relation functions ot*=™ (r1=1,,, ., u+1;1=0,...,v)
will appear. All the o™ (7= ,...,0+L;u=0,,..,v)
together determine via (3. 9) and (3. 7) the vth-order
approximation p(") to the solution p of the Kirkwood—
Salsburg equations. In analogy to the first-order situa-
tion of Sec. II and Appendix B, one can prove the

asymptoticity of this approximation (in the limit y — 0),
HP —p® He < 4 Ds, 4 Il (- zK) “

xB,(8,¥; £, 2), 0$zgzcn (3.10)

Again, this is valid for £ = n,, and under the additional
assumption that all the correlation functions, which are
involved in p*’, are bounded in each interval [0, z] with
z <Z,. The technique of proving (3.10) is the same as
in Appendix B, Typically the constant B, contains
terms of the form

max [m"(ﬂ)m]z< A )Yﬁ)"/‘lne/n)
mcMN £ 1757; £ ,

where X increases with the order v, so that the B,
diverges for v —«, This indicates that the asymptotic
expansion of p is not a convergent one,

{3.11)

1IV. EXTENSION TO NEGATIVE-VALUED STABLE
POTENTIALS

In the preceding two sections we considered only
nonnegative potentials ¥> 0. The reason for this was
that for potentials with negative values the product
operator P in general is unbounded. Then it is not
possible to derive statements about the quality of ap-
proximative solutions. However, also in this case one
can formally expand operators and vectors in powers of
¥* and the possibility and the method of solving a
hierarchy, which gives a contribution of a certain order
to the vector of distribution functions, apparently does
not depend on the sign of the potential., By thoroughly
checking the proofs which led to the asymptoticity re-
sults (2.17), (2.22), and (3.10), one notices the possi-
bility of a generalization to potentials with negative
values, if one could bound the operator P,

This, effectively, can be done with the help of a trick
introduced by Ruelle, 7 Pair potentials, taking negative
values, lead to a nonthermodynamic behavior, if they
are not stable. Therefore, one has to impose the stabil-
ity condition on the potential

T o) - m(B/2)

1=i<j=m

(meN;x, ..., %, € R,

4.1

B is a positive constant, I (4.1) is fulfilled, one can
always find an index i,=14y(X,,...,X,), so that

Tt zj;(xiO,) 2z — B, One now defines a permutation
operator II, by

Wy @ eye ey Kigy e s X)

= Oy e e s XKty e o s Xp)e 4. 2)
Then one easily sees that

11, B]| < exp(y* 8B). 4.3)

Since the distribution functions p,, are invariant with
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respect to a permutation of particles, one can consider,
instead of (2. 3), the modified Kirkwood—Salsburg
equations

(I-zl,Rp=za, 4. 4)
where the modified Kirkwood—=Salsburg operator can be
factorized into bounded operators IiK = (IP)R. For
technical reasons we also redefine C;=[gsd®yi§{v)!
<, In this new situation all of the proofs go through
in the same way as before. For example, in Appendix
B one only has to introduce some additional factors
exp(y*BB) and change (B8)— (B10) to inequalities with
the factor exp[nC(g)] instead of exp[—nC(B)] on the
right-hand side. Also the systems of integral equations,
to which the hierarchies of all orders reduce, remain
the same because of the invariance property of the dis-
tribution functions. Therefore, all results of Secs. II
and III are also valid in the more general case of
stable, bounded, integrable Kac potentials,

V. RESULTS AND CONCLUSIONS

Our main result is that for potentials of the form
(1.1) with the restrictions (2. 1) and z <z, a series
expansion for all of the distribution functions in powers
of v° can be found which is at least asymptotic in the
v— 0 limit. We also derive explicit expressions for the
coefficient of 7* in the expansion for p,,(Xs,...,X,) and
indicate how to obtain explicit expressions for coeffi-
cients of higher powers.

The coefficient of y® is of particular importance as
it is necessary to obtain, for example, the density—
density correlation function

1 . \
(pupp) =p [1 + = f a°x exp(ikx) (p; (x) - pz)} (5.1)
[ RS
and the isothermal compressibility

=5 1im(p0.). 5. 2)
Pk

These thermodynamic quantities exhibit rather in-
teresting behavior which is investigated in a sub-
sequent paper,

It is clear from the foregoing work that there exist
several unsolved problems., We have proven that the
expansion is asymptotic only up to z,, which is the
minimum of z,, and 24, It is clearly important to
extend this range. It has not yet been proven that the
expansion is not in fact convergent in some neighbor-
hood of y=0 although it is suspected that it is not. It
is also quite important to locate the phase transition
and determine its order. These questions and others
such as the form of the coefficients for higher powers
of v° are being investigated.

There are at least two reasons for studying poten-
tials of this kind. First, investigations of the structure
of the expansion may indicate possible paths to proving
similar theorems about the more complicated hard
core plus Kac potential systems. Second, and perhaps
more interesting, is the possibility of resummation of
the v expansion and obtaining information about sys-
tems with potentials which are finite in range,
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In conclusion we would stress that the advantage to
investigating systems with potentials of interaction
given by (1, 1) is that there exists only one length in the
problem, that is y~!, Therefore, one can absorb this
length into a scale factor, as we have done, and in-
vestigate the behavior of the system on the scale y'l.,
This is clearly impossible for lattice systems or

potentials with hard cores.

APPENDIX A: REDUCTION OF THE FIRST-ORDER
HIERARCHY

We want to show here how the hierarchy for the first-
order correction x“’ to the solution p of the Kirkwood—
Salsburg equations (2.3), namely

(T- 2Q0)x Y =2 (5@, + QX , (A1)
where @;, @, 5;, and x© are defined by (2.9), (2.10),
(2. 8), and (2, 16) is reduced by the ansatz

(x“))m(xb o0y xm)

:[ﬁ n(x,)]o > [fr(xi)+ >

ia1 i=1 i<k=m

hix,, x,,)] (A2)
to the integral equations (2. 19) and (2, 20) for the func-
tions r and %. Applying the operators, which appear in
(Al), to the vectors x'® [defined in (2.16)] and ¥’ one
gets infinite sums containing integrals of the functions
n,7,h. These sums can be substituted with the aid of
the integral equation (2. 15) for n by simple expressions,
In this way we get

(5@, + QX )&y ooy Xy)

:l[ﬁ n(&) LAY -BY dhxy)

A3
2 Lt ia2 (A3)

([i"‘ zéo]x(i))m(xiy sy xm)

:[ITI n(x,)J . [1’(31) + 22 h(xy, x;)

=1 i i

i=

LG+ B I, d) - 53214(1)], (Ad)

i=2

with

L(1) = [ d* (r)n(X)blyxg)?,

L) = [Red®(yR)n(%e)7 (% )¥(31q),

L1, 1) = [ o d° (%)X ) (%, Xo) (32 49),

Li(1) = [ 2o d°(y%) d° (vRge)n (%) (%)

X1 (X, X ) P(yx 10 (7210,

In this way, Eq. (Al) is satisfied, if
7(%;) + BL (1) - 281 (1) + 1,(1)]

+ 122 (R (%, X;) + BI5(1,7) + B(yx ;)] = 0.

(A5)

Especially for m =1 the sum gives zero and it follows
that

(%)) + 8L (1) - 284 (1) + L, (1)]=0. (A6)
Therefore, the sum must also be zero for all m and
since x,,...,X, are arbitrary, we have

(g, %;) + BI3(1, 2) + Bb(yx45) = 0. (AT)
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If one uses (A7) one easily derives that /;(1) +7,(1)
=—(1/8)I;(1,1) and with this and (A7) one gets instead
of (A8),

(%) + BI,(1) - 3[k(x(, %) + BP(0)] =0, (A8)

(A7) and (A8) are identical to Egs. (2.19) and (2, 20),
respectively.

APPENDIX B: ASYMPTOTICITY OF THE FIRST-
ORDER SOLUTION

In this appendix we want to derive the asymptoticity
property (2. 22) for the first-order approximation p®
=x9+ 5D to the solution p of the Kirkwood—
Salsburg equations (2.3). The vectors x'* and x'V
respectively are solutions of the zeroth and first-order
hierarchies

(f" zéo)x“” =2a,

(- zéo)x“’ =2(59, + QX
where QO, é(v and §1( are def'me.d by (2.9), (2.10), and
@2.8), and x© and x'1’ are explicitly given by

X)Xy, .., X)) =0T,

X)Xy oo oy Xy =0" E r +[ 22 h(x,-k)], (B2)

i=1 k<m

(B1)

n, v, and & being determined by the integral equations
(2.15), (2.19), and (2. 20).

By combining the two equations (Bl) we get
(F-2R)pD =za - "2 (5,Q, + §x' (B3)

with K, =Q, +°(5,§, + ). Subtracting (B3) from the
Kirkwood—Salsburg equation (I-2zK)p=za and adding
and subtracting a term zKp‘“, one obtains

(- 2K)(p~p")
:Z(I% - X})p(i) + ')/252 (§1QA0 + él)x(i)! (B4)

from which we get the following bound:

lo-p® <2l d=2Ryt - [} - 2ol
BUSGRO + Ix Pl (B5)

To simplify the calculation we split off the first vector

norm on the right-hand side,

| (P Py)Rp ||,

+ | ByR = Bp ||, + | 5,00 | ..
(B8)

&~ & |, <

It remains to be shown that ||(P- Py)Rp|,,

2y (R-R )p“’ll are bounded to second-order and
||S1Qop( II;, Q0 VM, 115,@0™ll, to zeroth-order in

7v®. We will demonstrate this explicitly in the first case:
By use of le—1+x}| <2x? for x> 0 we have

( ([P_ Pi]ﬁp“))m(xls sy xm){
< 389%54 m - 12| Bx) Xy o oo X |
+ [ BX ) Xy, o, %) ] (B7)

The two terms on the right-hand side can be calculated
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directly,
RX )%y, . ., Xp) =02
B D), - o, X))
L exp[—-nC(B)]- [(m - 1)r—nC(@)r

L exp[- nC(g), (B8)

+ 20 hixyy) +n

}1 1,4) +n°7, 1)] (B9)
2<i<i=m
with
F1,0) = [ od® Ko flxio)nryg),
F1)= fms %, fms d°Kor f 010 ) (¥10) e ().

If we assume that the absolute values of the functions »
and % are bounded in the interval [0,7Z_,~¢]| by 7 and &
respectively, (B7)—(B9) give

1@~ PRo® |,
2 L B2A% exp[~ nC ()] » max{m’(n/E)"
E:'. mE N

x[1 495 (m +nC@EWF + Gin(m - 1)+ mnC(8)

+m2C (BRI}
With £2n,, we have 0<sx=n/f <1 for all 0=z <z,
Therefore, the function f(m)=m ™ has a finite
maximum for m = - »/Inx, With this and the fact that

the bounds 7 and % are clearly also functions of 8, ¥, &,
and z, one finally gets

|(P- BpRp™ |, < *B(8, d; £, 2).

Bounds for the other four expressions can be obtained in
a similar way. Inserting all bounds into (B6) and (B5)
gives the desired result,

“p— o “e < 4752 H (f— Zl%)-i “B(B, 4; &, 2),

(B10)

(B11)

0<z <z,
(B12)

Here, £=n,,, and we remark that B; may be chosen in-
dependent of z if 7 and k are bounded in the closed in-
terval [0,z,,].
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The Kirkwood-Salsburg equations for a bounded stable
Kac potential. Il. Instability and phase transitions
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We prove that systems interacting via potentials of the form

b(x;,%,) = ¥ Y(y x1,)

where s is bounded stable and defined on bounded support are unstable to fluctuations of wavenumber

K’ min7=0 at a particular value v, of v=ng, where n is the density and 8= 1/kz T in the limit y—0
(VdW1). We also prove (in the VdW1) that the solution to the equation for the single particle distribution
function bifurcates at this same value v, that the nonconstant solution is periodic and has a reciprocal
lattice vector with a magnitude k', and that there exists a type of long range order at v,. These results
are interpreted to indicate the existence of a spinodal point on the liquid isotherm, and similarities between
this system and the known properties of the hard sphere fluid are discussed. A theorem is also proven
about the range of activity where one has a unique fluid phase, and it is shown that this system has no

coexistence region in the usual sense.

I. INTRODUCTION

In the preceding paper! (referred to as I) we derived
an expansion in powers of y° for all the distribution
functions for systems interacting via a two-particle
potential of the form

¢ (gg) =¥ Pxg), *pp=|%—%y,

where y is an arbitrary parameter, its inverse being
proportional to the range of the potential, ¥ is a bound-
ed, stable,? and absolutely integrable function, and s is
the dimension, For 0 <z <Ec, the expansion was proven
to be at least asymptotic and explicit expressions for
the coefficients of the zeroth and first powers of ¢
were found to be

1.1)

pm(xly cen ’xm): Xr(nO)(xly ceey xm)
+ X Ry e s, Xy) + OGP,
Xr(r?)(xly seey xm) :/=1 nsc(YJ)! (1' 2)
600w =] )] 5 [
J=1 i=1
+ E hsc(Yif yk)]’
i<k=m

where y =X is the scaled position vector and the func-
tions ng,, 7., and i, are given by

nso(y1) =2 - expl= Bf s (12)8(31) 4], (1.3a)
hoo(¥1, ¥2) = = BY(y12) = B f s 7c¥0)
XP(310)hsc (¥25 ¥o) 45, (1.3b)
7se(y1) = 2{Rs, (¥, ¥1) + BY(0)]
= B J s sc(80)8(910)7 . (¥0) 2°¥q. (1.3c)

In this paper we prove the existence of an instability
in this system in the Van der Waals limit y — 0 (VdWI1)
for the restricted class of potentials (1,1) which have

bounded support as functions of y;, =%y,
d(y1) =0 for vy > Ry, .19

This instability is shown to be due to fluctuations of
wave vectors |K; .| #0. In order to gain greater insight
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into the nature of this instability we assume, as argued
for by Gates® for all densities p and proven by the
authors? for small p, that the solution to the Kirkwood—
Monroe (KM) equation (1.3a) correctly gives p,(x;) in
the VdW1. Assuming the validity of this equation we
show that the instability we have found is connected
with a bifurcation point of the nonlinear integral equa-
tion (1. 3a)., Following an argument of Gates at this
point, the free energy corresponding to the constant
solution ceases to be a minimum.

The structure of this paper is as follows, In Sec. II
we derive expressions for the energy density, pressure,
isothermal compressibility, and structure factor in the
VdWL. The structure factor is shown to diverge for
particular wave vectors k[ ;.| #0 at a certain value v,
of v=ng,

In Sec, IIl we examine the above quantities and illu-
strate the behavior of the two-particle correlation func-
tion g; to order %, given by g,(xy;} =1+ i, (y,), in
general and for a particular choice of ¥(v;,) to gain
some additional insight into the meaning of the di-
vergence of the structure factor,

In Sec. IV we show that v, is a bifurcation point of
the KM equation and that for 8r ~> v, there exists a
periodic solution of this equation with a period charac-
terized by a reciprocal lattice vector k!, with the same
magnitude as a wave vector of the critical fluctuations.

Section V contains the proof of a theorem about
uniqueness of the solutions of the Kirkwood- Monroe
equation and it is also shown that there does not exist
for any density a solution which would describe a co~
existence region in the usual way.

In the final section, VI, we discuss the meaning of
these results and compare them to the work of other
authors,

Il. THERMODYNAMICS AND STRUCTURE FUNCTION
In I it was shown that the pair correlation function

g for z <z, could be written as
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£20; v =1+ ¥ h (v) +*B(y, 2, B; v°), (2.1)

where B is a uniformly bounded function for y € IR and
z <z, B, ¥° restricted to compact sets of R, Using
(2. 1) we can calculate the energy per particle, pres-
sure, isothermal compresgibility, and the structure
factor in the limit y — 0. Expressions for these quanti-
ties are obtained by inserting g,(x;»°} in the standard
formulas® given below and then taking the VdW1l, We
have for the energy per particle

e(T,n)=(s/2)kgT + n fms & (x)g, (x) d°X, (2.2)
the pressure
(T, n)=nkgT - ——n / x—ﬁ (x)go (x) d°x, (2.3)
and the structure factor®
S(k) = nklsT [1 +n /m £203) exp(ik) de], (2. 4)

the & — 0 limit of which is the isothermal compressibil-
ity. We have anticipated in the above equations that
n{X) is a constant and that in taking the limit y — 0 we
will have no contributions from coefficients of powers
of (/)™ with m =1 in the expansion for p;(X;7*). This
will become clear in the course of the calculations.

Inserting (1.1) and (2. 1) into (2.2), defining y=1yx
and realizing from (1, 3a) and (1. 3b) that k. (v) like
B(y) is uniformly bounded for z <Z,,, one has in the
limit y — 0

e(T,n)=(s/2kzT+3% nw(O) {2.5)

where 3(0) =/ gs #(y)dsy <, Clearly, higher powers
of y® in the expansion for p,(x,; ) would give no con-
tribution to the zeroth order result (2. 5).

In calculating the pressure according to (2. 3) we re-
strict ourselves to the class of at least piecewise dif-
ferentiable functions ¢(y) with bounded support, so that

l(}’)“l})(})*’ 2 dibly=a,). (2.6)
If we then again scale the integration variable to y=1/X
it is obvious that in the VdW1 we only have a contribu-

tion from the zeroth-order term in (2, 1) and one gets
by partial integration for y — 0,

(T, n)=nksT + £n*(0). 2.7)
The structure function presents a much more difficult

problem and a much more interesting result, We can
rewrite (2,4) for 2#0 as

Stk :n_kls‘f[”"/ms (gz(x)"l)exp(ikx)dsi{lo

(2. 8)
Inserting (2.1) and using the explicit form of the
Fourier transform (k') of kg (v), where vk’ =k,
- " kl
ksc(k’) == 8 ( (2¢ 9)

1+ Bnd(R’)

which can simply be derived from the linear integral
equation (1.3b), we have

1 (1_ nBY(’)
nkgT

1+nBd(k")

> +v*F(z, B; ¥).
(2.10)

S (k) =S(k)=

1736 J. Math. Phys., Vol. 18, No. 9, September 1877

The problem is to show that

limy*F(z, ;=0

r~0

(2.11)

The difficulty lies in the fact that the integral in (2, 8)
is over an infinite range and is not cut off (or damped
for more general potentials) by the bounded support of
P(v) as in (2, 2) and (2. 3). Formulating condition (2,11)
in a different way,

hmf (go(x) — 1) exp(ikx) d% = ] sl () exp(ik’y) d°y,
(2.11)

and scaling the integration variable on the left, we have
to prove that the limit and the integral in (2.11’) can be
commuted, since we know from I that

s L (5(2) 1) et

for z <z,. For this it is sufficient that the y-integral
over the absolute value | g,(y/y)~ 1! is uniformly con-
vergent with respect to y. The idea now is to express
this integrand by a cluster function of a system with the
scaled distances y;; = vX;; between the particles which
may have some other scaled inverse temperature 8’
and activity z’, and then to apply certain bounds on the
integral over this cluster function using results of
Penrose’ and Ruelle, ?

For this reason we express gz(y/y) — 1 by the

original distribution functions

(_‘_’) 1= pz(,\’/')/;'yss 2, 8- [pL()/S) Z, B)]z
£ v —i=

[01(*, 2, BF ’ (2.12)
where we explicitly point out the dependence on 7°, 2
and B on the right-hand side. The distribution functions
are defined by, 5

pm(xiy ooy Xl 7"5325 'd)

z"

=HmZE(A, %z, 8)1 2 s

A +o

x/ ARy d%,,, 1 L+,
AI I=i<jsm+l

-
=3

w (2.13)
TN, y5z2,8) = b 2 / A%y oo d% T (1 i)
A BN 1=i<i=t
For potentials of the form (1.1) we have
fiy = exp[= Br(yx; )] - 1. (2.14)

Convergence of the limit in {2, 13) with respect to the
Volume A is guaranteed inside the Ruelle circle |z
<exp(- BB~ 1)CB)1, CB)=[gs! fi;} d°%;;, and B is
given by the stablllty condition for the potential ¢,

E (b(xij);—EB

i<i<j=m 2

meN;Xy,...,X,cR°)., (2.15)
If now we scale the integration variables in (2. 13),

¥;:=vX;, and define y°z' =z, §' =75 we get

y1
pm(y e

where pf, is the distribution function of particles at
points y;, interacting via the potential $(vy,), for
activity 2z’ and inverse temperature 8’. The representa-
tion of p/, as a A limit in the sense of (2. 13) is valid,

e B) LTt ey Ymi2 B, (2.16)
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since z lying in the Ruelle circle implies that 1z’]
<exp(- B’B’ - 1)C’(8")"!, where C'(8')= [gs | f{,] d°,,
=y*C(B) with f/; = exp[- B)(y,;,)]- 1, and B’ =B/* gives
the stability condition for the potential ¥ like B in (2, 15)
does for ¢.

Equation (2. 12) can now be written as
g .2)_ 1= w’(y';z'; B’)
Ay P’ B
with the two-particle cluster function w’, generally de-
fined as:
w’(y1,¥e; 2", B =p3(y1, Y25 2', B) — p1(§1; 27, B)p{(¥2; 2", B').
(2.18)

2.17)

The uniform convergence of the integral

1] (»\_
ms gz(?) !

with respect to ¥, which is left to be shown in order
(2. 11) to be right, therefore is equivalent to the possi-
bility of choosing for any fixed ¢ € 0 a y, independent of
¥, so that for all y,

d°y

1
y*pi(2’, ")
To show this we use the following results of Ruelle®:

hnd 212
w’(YMYZ):E 7! / (p;+2(Yb-°':YI+2)
. mis

f lw' (1527, 8] &2 <e.  (2.19)
|Y12|?1'0

1=0

(2.20)
deY3'°°dSY!é2a
oy, Y=2 N7 f,
' 1sikjsm

where the sum extends over all connected graphs T’
with vertices 1,...,m and the product is over all pairs
1 <4 <j <m such that ¢ and j are joined by a line in T,
The above expansion for w’ converges uniformly with
respect to y; and y, inside the Ruelle circle and may
therefore be integrated term by term. Integrals over
the ¢/ functions can be bounded in the following way™

I A A N I SRR &
< mm-Z eXp[(WI _ z)ﬁIBI]CI(SI)m-i' (2- 21)

Since the potential ¥(y) has finite support and all the
graphs in the representation (2, 20) of ¢, are connected
there exists for each y;> 0 a number I(y;), so that for
each ly; -y, > v, the first I(y;)— 1 terms in the sum
(2. 20) for w'(y;,y2) are zero. Clearly, I(y;) can be
chosen to go to infinity if and only if y, goes to infinity.
Using (2. 20) and (2. 21) we then have

S 1wl @y

Iylzy
5 [2/0+2) exp(®8'BC' (8]
zsl(yo) Z!
and with® 11 > (/e)?, 2'C’(8’) =2C(B), assuming [(y,)> 2
and z < 3exp(- 8B - 1)C(8)™?,

e
1

I7l=yy
i [22C(8) exp(BB + )]''W’
- 752 c(®) 1~22C(B) exp(BB +1)

> 21201(31)

(2.22)
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Choosing a suitable y,, we can make /(y,) so large that
the right-hand side is smaller than 1/y°< p;(28)?, where
pr(2,8)>0 is a lower bound to p,(7*,z,3) in a region
around y =0, which exists according to I, (The trivial
case z2=0 or 8=0 is to be excluded, ) With (2. 16) this
concludes the proof of the criterion (2. 19) for uniform
convergence of the scaled integral on the left of (2.117),
so that the 1limit and the integral can be commuted and
(2. 10) together with (2, 11) is valid.

We therefore have obtained for z < 3 exp(~ fB—1)
X C(B)"!—which apparently can be improved to z inside
the Ruelle circle—the result that in the VdWl
L1t +ngpent,
with the corresponding expression for the isothermal
compressibility,

S, (k)= (2.23)

Hr=1imS,, )= E[1 + nj(o))", (2. 24)
&' +0

We examine the meaning of these results in the next
section,

1. INSTABILITY AND LONG RANGE ORDER

In the previous section the following results were
derived in the VdWI:

e(T,n)=(s/2)k 5T + £13(0), 3.1)
(T, n)=nk,T + sn2H(0), (3.2)
Sucll's T, m) = = (1 nBYEN, .3)
H T, n)= nkIE,T [1 +nBg(0)]2. (3.4)

Here, the zeroth-order density »n is given by the KM
equation,

n=2z - exp[- Bny(0)].

The above equations have been shown to be valid for

z <z, or 2z inside the Ruelle circle respectively, How-
ever, in the VdWI they are exact and therefore their
range of validity includes all parts of the thermodynamic
surface which can be reached by analytic continuation,
Clearly, this only has meaning in the intersection of the
range of analytic continuation of all the above equations,

(3.5)

It is clear that e and p, given by (3.1) and (3. 2), are
entire functions of n for a fixed 7., Since ¥(v) is bounded
and stable we must have $(0)= 0 1% and therefore
kr(T,n) is an analytic function of » for all #n# 0. This
last result is somewhat surprising in that the Vdwl for
a hard core plus attractive Kac potential produces a
divergence in the analytic continuation of the isothermal
compressibility!! which signifies an instability at the
spinodal point of the Van der Waals equation. On the
other hand, we can see that the structure factor (3, 3)
does show an instability for the class of potentials such
that (k') <0 for some values of k', However, this in-
stability is at some 2}, #0. It is immediately clear that
Eqs. (3.1), (3.2), and (3.4) do not have any physical
significance as analytic continuations in » beyond the
point where (3. 3) diverges. This is not to say that they
have no physical significance beyond this point, but
only that we cannot infer it from analytic continuation.
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To gain some further insight into the nature of this
instability we will study the first-order contribution
he () to the pair correlation function g,. Its Fourier
transform, which has been obtained in (2. 9) as a solu-
tion of the integral equation (1. 3b), can be written as

Esc(kl) == BA(kI)

W) D=1+ 0ien, vens.

(3.6)
@ is a real-valued, integrable, continuous function
bounded from below and takes its minimum value at
some argument k... (There may be several wave-
numbers k[, in which case the following considerations
can fzasily be generalized, ) If J is nonnegative for all
k', hg, is defined and integrable over the whole range of
k'’ for all physical 8 and #. In the case Y(k.,,) <0,
however, there exists some minimum value v, such that

D, (k) = 1+ 0yd(lyyg) = 0. (3.7)

For v =v, the function i, (%’) will have a singularity at
k' =R}, which signals an instability under a periodic
perturbation with wavenumber k.;,#0. To be specific,
we consider the case s =3, where

g o
ho(y)=- B_ f k’sim}k’ﬂk—,) dk’,

4”2:‘] D(k ) (3° 8)

Since ¥(v) has finite support, Jj(k') is an entire function
of the complex variable 2’ and the zeroes of the function
D are discrete. !> Let us assume additionally that the
integrand in (3. 8) has only simple poles in the complex
k'’ plane for v <»;, given by D(’)=0, As an example of
a potential fulfilling all assumptions one can use

Wy =48([y|-a), A,a-o0. (3.9
In this example the condition D(k’)=0 gives
4na , Sinak’ |
1-24 2 [cosak iy } =0, (3.10)

which can be solved numerically for complex %',

From i(k’) = @(— k') :Zb*(k’*) we know that the zeroes
of D lie symmetrically to the real and to the complex
axis and can therefore be labeled as

k4l =40£40,, 6,,0,>0 (1=0,1,2,++, v=1,2,3,4)
RYEL =416, 6;>0 (£=0,1,2,--+, v=1,2,3,4),
(3.11)

If all the following sums converge, the integral in (3. 8)
can be performed by applying the theory of residues,
Defining reduced residues by

86,0, (5, +i0.) =

@ _ ;
RS ==ps, ¥i0,) Vs Ti0),
@_ 205 .
Ru - D'(ZQE) w(zeu.)’
we can write down %, (v) in the following closed form:
B eouw? ) 4 o W
T ——— -+
he (W) 1y [? 2.0, (cosd, y ImR," + sind, v ReR ")

+ 77 exp(- Bﬂy)ReR%)]. (3.12)

1%

With varying v the poles &% of D move in the com-
plex &’ plane and a part of them will approach the real
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axis at wavenumber [, for v— v, If, for simplicity,
there is only a single pair of poles 3;+ {0, reaching kZ,,
and the above sums converge uniformly in v, 13 then we
have in the neighborhood of v,

Ry exp(- g5y
hsc(y) - va 0’ Slnkr'nlny (0 2.1 ) (1" EUO)'
Y®min 0

(3.13)

Since 0, — 0, we can see from (3.13) that v approaching
its critical value v, implies long range order in %,
that is the damping term exp(- oyy) in the first-order
pair correlation function goes to one. This long range
order has a characteristic periodicity which has the
same magnitude as the wavenumber of the instability

in (3.3).

We note that as one would expect from other work
with v expansions, 14 the coefficient of order y* diverges
coincident with the appearance of long range order.
This implies that the y expansion derived in I cannot be
analytically continued past the critical value of Bp,

i, e., there is a breakdown at v;. To restate the argu-
ment, it is the long range order in the pair correlation
function to order y° which produces the singularity in
the structure factor,

Before interpreting the results of this section, we
present in the next section a proof that the Kirkwood—
Monroe equation has a bifurcation point at v, and that a
periodic solution exists, in which the basis reciprocal
lattice vectors have magnitudes %[,

1V. BIFURCATION OF THE KIRKWOOD-MONROE
EQUATION AND MINIMUM OF THE FREE ENERGY

Before discussing the bifurcation of the solutions of
Eq. (1.3a) a work should be said about rigor. The re-
sults obtained in Secs. II and III are rigorous. We wish
in this section to examine the properties of the KM
equation for values of 3 and »n for which no rigorous
derivation exists. Nevertheless, an argument does exist
for the validity of (1.3a) with one rather plausible,
however unproven, assumption, This is a result of
Gates? based on a variational principle derived by Gates
and Penrose. !°

We will in this section assume that Gates is correct
and that the solution to the Kirkwood—Monroe equation
gives the single particle distribution function with the
corresponding lowest free energy in the VdWl, We will
show using a theorem proven by Krasnoselskiil® and
used previously by Weeks, Rice, and Kozak!" and
Raveché and Stuart!® that the KM equation (1. 3a) has a
bifurcation point at n8=v, and that the constant solu-
tion of it does not have the lowest free energy at this
point. We also prove that the solution is periodic with
basis reciprocal lattice vectors with magnitude kg,
given by (3.7).

We essentially follow the argument presented by
Raveché and Stuart, With a particular lattice in mind
we define a Hilbert space // to be those functions which
are invariant under the space group of the particular
lattice chosen. We additionally demand reflection sym-
metry about the origin

o=y =0ly), ¢chH. 4.1)
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An inner product can be defined rather simply and it
can be shown that the operator, defined by the exponent
of the KM equation

p1(y1) =2 - expl- B [ s p1(72)¥(v12) @°Y3],

is compact, 18 7o employ the bifurcation theorem of
Krasnoselskii, which is quoted in the Appendix, we
must rewrite the integral equation (4.2). To do this we
define a function p, given by

p1(y)=n[1+p(y)], (4.3)

where 7 is the constant solution of (4.2), Inserting (4. 2)
in (4.1) gives the following equation for p:

p(yy) = exp[—nB [P (¥2)0(vi) d°ya] - 1.

This equation now satisfies the conditions of the the-
orem stated in the Appendix, We see immediately that
(4, 4) can only have a bifurcation point in // when the
linear equation

Bly) + Bn [ s D(92)9(v12) &y =0 4.5)

has a nonzero solution in this Hilbert space. It can be
seen from the arguments in Ref, 18 that (4, 4) will have
a bifurcation point in one, two, and three dimensions
for pf=vy, if v, is defined as the first positive value of
pB=v such that

1+0d(k") =0

(4.2)

(4. 4)

(4.6)

can be satisfied for &' = |k, |, where K}, is a basis
reciprocal lattice vector of the lattice on which the
Hilbert space // has been defined.

We note immediately that v, and 2, defined by
(4.8), are the same values of these variables at which
the instability, obtained in Sec. II, occurs. By employ-
ing the above mentioned variational method of Gates®
one can show that the constant solution » of (4. 2) is no
longer the one with the lowest free energy.

To sum up the resulis of this section: We have shown
that at p8=v, the KM equation has a bifurcation point.
The nonconstant part of the solution that appears at v,
is periodic with a reciprocal lattice vector k,,. These
values of vy and iKkJ,,| are the same as those calculated
for the instability in Sec, II,

V. UNIQUENESS OF SOLUTIONS OF THE KIRKWOOD-
MONROE EQUATION AND NONEXISTENCE OF A
COEXISTENCE REGION

In this section only potentials are considered which
in addition to all previous conditions are nonnegative,
We prove a theorem which determines a region of uni-
queness of the solution of the KM equation, We also
prove that at no value of the activity 2 can we have solu-
tions which are nontrivial linear combinations of a con-
stant solution » and a nonconstant solution m(y), both at
this same value z. This indicates that the KM equation
does not have a coexistence region in the usual sense,

First we show that the solution of the Kirkwood—
Monroe equation (}. 3a) is unique in the space of real
functions if 0 <#nB4(0) <1 '® and is therefore identical
to the constant solution which exists everywhere, An
examination of (1.3a) immediately reveals that #,,(y,)
= 0 for all y;. That in turn implies that n(y,) <z,
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since ¥(vyy) here is a positive definite function. The
process of inserting lower and upper bounds in (1. 3a)
to obtain new upper and lower bounds for #,.(y;) can be
continued to generate two sequences, one for the upper
bound and one for the lower, If the iteration procedure
approaches a fixed point then the two sequences must
converge to the same limit and the solution of (1,3a) is
a unique constant,

In order to show that for 0 <nB#(0) <1 there is a
unique fixed point we introduce dimensionless variables
n=npP(0) and Z=2B4(0) and define functions f and g by

) =Zze?, g)=f(f(1), r€R, (5.1)

We will prove now that any sequence, recursively de-
fined by

EZ}‘OZO’ Av:g(xv-l) (V:1y273s"')) (502)

approaches a unique fixed point 3* € [0, 2] of g for

Z <e. Then it is clear that the sequence A;=0, A,
=f(\%.;) (p=1,2,3,--+) will also approach 1*, since
this is true for both of the subsequences {Aév}:,o and
{Myathino and that fF(A*) =x*. The above condition zZ<e
is easily seen from the KM equation Z =#e" to be ful-
filled if # <1, This completes the proof,

A sufficient condition for any sequence (5. 2) ap-
proaching a unique fixed point A* of g is that 2= g(n)
z0and lg’'(x)l <A <1 forall 2= x=0, The first in-
equality is trivial, since clearly 2= f(A)=0for Z=12> 0,
With f/(A) = - f(\) we have

g M=) g, g" M) =fgMW)[rOn) -1l

Since for 2= x= 0, clearly f(A) and g(\) are greater than
zero, |g’| takes its maximum value either at x=0 or at
A=Z or at X, where fx)=1. But ig’(0)!, lg’ )| < %%
<4e? <1 and g'(\)=Ze™!, which finally gives the above
stated condition z <e,

(5.3)

The last thing we will show in this section is that the
KM equation cannot have a solution of the form

ne (y)=an+bm(y), a+b=1, b#0,1, (5. 4)

where » is a constant solution, » a nonconstant solu-
tion, both for the same value of 2z, at which one might
expect a coexistence region, Inserting (5.4) into (1, 3a)
and using that » and m themselves are solutions of that
equation, gives

an + bm(y) :z(_Z)“(M) b

z
and since a+b=1 we have

an + bm(y) =n®m(y)’. (5.5)

Because the potential is nonnegative, any solution of
the KM equation is bounded and hence continuous,
Therefore, we can find a y, with m(y,) > 0, so that
m(y)# m(y,) in the neighborhood of y,. Then we get, by
subtracting equation (5, 5) for y=y, and y =y, + Ay
from one another,

s ran) ")y minran)

b _ st [q_
nt m(5o) [1 m(y,) m(y,)

(5.6)
Since in the limit Ay — 0 the right-hand side goes to
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bm(y,)"! it follows that 7% =m(y,)>! for b+0, Repeat-
ing the argument for some different y§ in the neighbor~
hood of y,, giving a different value of m, we have a
contradiction for 0#b#1, In the next section we dis-
cuss the significance of this result,

V1. RESULTS AND CONCLUSIONS

Our main results are that for the potentials we have
stipulated, there exists an instability in the system in
the VdW1 at ng8 =v; which is due to fluctuations of wave
vectors with a magnitude &}, #0. This instability is
shown to be connected with the onset of a type of long
range order, Furthermore, we showed that the solu-
tions of the KM equation bifurcated in a specially chosen
Hilbert space at p8=v, and that the nonconstant solu-
tion that appeared at this point had a reciprocal lattice
vector with a magnitude 2};,. We also showed that the
KM equation does not admit a solution of the usual co-
existence form, All of these above results were ob-
tained rigorously.

These results seem to indicate that the systems dealt
with here have a phase transition (perhaps first order)
with a fluid isotherm that ends at a point of instability.
The instability is to fluctuations of a wavenumber K ;,
#0 which is also the magnitude of a reciprocal lattice
vector of the solid which is presumably stable at this
activity and temperature. The results also seem to
indicate that this system will have no coexistence
region.

The above results are not only interesting as prop-
erties of a mean field model arrived at rigorously but
they also bear a striking similarity to results obtained
for hard sphere fluids, Of particular interest in this
context is the result of Raveché and Stuart!? who showed
that an equation quite similar in form to (4.4) has a
bifurcation at the end of the fluid branch. We show in a
subsequent paper that the hard sphere system also has
an instability at this point in analogy to the VdW1 case,
We also note that the mean field model for these poten-
tials also predicts the absence of divergences in the
thermodynamic quantities such as «;. This is also
found for hard spheres.?® The nonexistence of a co-
existence region in the VdWl is of some interest in
light of the above similarity between the hard sphere
and mean field repulsive potential cases. We merely
note that a coexistence region, i.e., Maxwell con-
struction, is found in the hard core plus attractive
Kac potential case, !
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APPENDIX

For the sake of completeness we state a theorem of
Krasnoselskii'®:

Let A be a completely continuous operator having a
Fréchet derivative B at the point O and satisfying AO
=0, Then each characteristic value of odd multiplicity
of the linear operator B is a bifurcation point of the
operator A.
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A detailed classification is made of orthogonal coordinate systems for which the wave equation

Y, —App =0 admits an R-separable solution. Only those coordinate systems are given which are not
conformally equivalent to coordinate systems that have been found in previous articles. We find 106 new
coordinates to give a total of 367 conformally inequivalent orthogonal coordinates for which the wave

equation admits an R-separation of variables.

INTRODUCTION

In this article we continue our investigation of the
orthogonal R-separable coordinate systems for which
the wave equation in space—time,

Upe = By =0 (*)

admits an R-separation of variables.!~* In a previous
article? we have studied coordinate systems for which
the Klein—Gordon equation

Pp = D= AP (**)

admits a separation of variables. Such coordinate sys-
terus also admit a separation of variables for the wave
equation (*). In Paper 4 of this series we found 261 con-
formally inequivalent coordinate systems of this type.

It is the purpose of this article to find coordinate sys-
tems for which (*_) admits a strictly R-separable solu-
tion. By this we mean those coordinate systems for
which (%) admits an R-separable solution and for which
there is no conformally equivalent coordinate system
such that () is simply separable. As with the treatment
of the wave equation in two space dimensions, ® we clas-
sify the different types of orthogonal coordinate systems
whose coordinate curves are cyclides or their degen-
erate forms.

The content of the article is arranged as follows. In
Sec. I we discuss the relevant details concerning co-
ordinate systems whose coordinate curves are cyclides
of most general type. This is a development of the
methods in the fundamental book by Bécher.® Also in
this section we give the various differential forms cor-
responding to the coordinate systems of interest. In
Sec. II we present the coordinate systems together with
the corresponding separation equations and triplet of
mutually commuting operators {L,, L,, L,} which de-
scribe each such system.

I. R-SEPARABLE DIFFERENTIAL FORMS FOR THE
WAVE EQUATION

Here we classify orthogonal differential forms for
which the wave equation (x) admits a strictly “R-sepa-
rable” separation of variables. We recall that if ® is a
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solution of (x) which is R-separable in terms of some
new coordinates x; (i =1, 2, 3,4), then ¥ can be written
in the form

$=exp[Q(xy, xp, x5, x) O (1.1

where the equation for the function ¢ is such that it ad-
mits a separation of variables. The factor exp@ is
called the modulation function and has a definite form
for each R-separable coordinate system. In addition no
part of the function @ should contain the sum of functions
f; of only one of the variables x;. For a strict R-sepa-
rable system the modulation function @ should not be
zero. In a previous article’ where we treated the wave
equation in two space variables, it was shown that only
c¢yclidic coordinate systems whose coordinate surfaces
were degenerate forms of confocal cyclides of the most
general type were strictly R-separable. All remaining
cylidic R-separable coordinate systems could be trans-
formed into coordinate systems for which the Klein
Gordon equation (8,, — A,)¢ = A also admits a separa-
tion of variables. This was done by a suitable trans-
formation of the O(3, 2) conformal symmetry group of
(3;, — 8,)¢ =0. The same situation holds in the case of
three spatial dimensions, and it is accordingly the pur-
pose of this section to discuss confocal families of cy-
clides of general type and their degenerate forms. We
now briefly outline the properties of cyclides of this
type and refer the reader for details to our previous
article® and the book by Bécher.® Families of confocal
cyclides have their natural setting in a six-~-dimensional
projective space. Elements of this space are specified
by six homogeneous coordinates vy : vy Vg iy Vs v,
which are not all simultaneously zero and which are
connected by the relation

(1.2)

The space—time coordinates are related to the homo-
geneous coordinates via the relations
v =i(p% = g% = %~ s% + u?),

Vo=pP-gi-riostou?,

¥ vt vt f v =0,

Ve =2pw, V4= 2iqw, (1.3)
Vo= 207w, Vg=2isw,
Copyright © 1977 American Institute of Physics 1741



where t=p/w, x=q/w, y=v/w, 2=s/w. A cyclide is
then defined as the locus of points lying on the quadric
surface

e

.
I,
&

=2 a;p9;,=0

1
with a;; = a;; and det(a;;) #0. The classification of cy-
clides under the group of orthogonal transformations
which preserves the form

6
Zz.\’iz
i=l

is then the problem of classifying the intersections of
two quadratic forms in six-dimensional projective
space. This is performed by the method of elementary
divisors applied to the two quadratic forms. (For the
details of this classification see Refs. 5, 6).

The equation describing the most general family of
confocal cyclides in this six-dimensional projective
space is

yiz

M-

Mo

Mm

:0’ yizzo, (1.4)

-
[N

Here A is one of the new curvilinear coordinates and
e;#*e; ifi#j ({,j=1,...,6). If we choose an ortho-
gonal coordinate system in space—time whose coordi-
nate surfaces have equations of the type (1.4), then the
line element in terms of these new coordinates becomes

1 [& (= x ) — %) (5, — %) ]
2__ i= XX = X)X — % 2
ds =Tt [12:1 7] dx,; (1.5)
where
6 - 1 6
flx) =T (x;—e;) and —==2,ew,;%
j=1 o ga

The coordinates v; are related to the curvilinear coor-
dinates x; via the equations
vi=0o(e)/flle), i=1,...,6, (1.6)

where ¢(A) =114 (X~ x,). If we write the solution ¥ of
the wave equation as

b= ("2, (1.7)
then & satisfies the differential equation

& 1 azcb) ] 5

2 —— =3} +3x;9] -2 L,ei)szo, (1.8)

A [<¢'(xf) 9, ! <i=1

where 2dv; =dx,;/Vf(x;). This equation admits separable
solutions for the function ®, i.e.,

4
$=1TI Ej(x]-).
j=1

Each of the functions E; satisfies the differential
equation

2 6
%E}u [3xj4 - 2(21 e,-) x;% +Ax,;®+ Bx; + c] E;=0.
7 i=

(1.9
We now proceed to classify coordinate systems of this
type by considering the expression inside the square
brackets in (1.5) and finding out what ranges of the co-
ordinates x; permit this differential form to have over-
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all negative signature. We must also consider degen-
erate forms of these general coordinate systems which
result when some of the e¢; become equal. In addition
we should mention that two confocal families of cyclides
of type (1.4) are equivalent under the action of real
linear transformations of the coordinates y; which pre-
serve the quantity %%, v,? if their parameters ¢;, e;’
and coordinates ¥;, x;’ are related by the equations

_oe’ 4B

_ax +
P oyve 4+ 60

=T (1.10)

where @, 8,7, 8c R and ad~ 3y#0.

We now give the classification of the strictly R-
separable coordinate systems, in particular the differ-
ential forms.

[1] The first type of differential form corresponds to
R-separable coordinate systems of the type (1. 6) for
which all the e; are real. In addition the relations (1.10)
can be used to standardize these quantities so that ¢,
=, ¢,=a, e;=0b, gg=c, e5=1, e,=0witha>b>c
>1., The differential form then becomes

2 *3)12 —G\(Xi‘xj)(xi—x )(Xi—-)«’) ]
ds _<4w4 )['1)_:/1 h(Xi)k l dxia (1.11)

where h(x) = (x - a){x - b)(x = ¢)(x = 1)x. The ranges of
variation of the variables x; are

Xy, Xpy Xg T @ Xy hy Xy, X > a> b >y e x>

Xy, Xgy Xg & a ™ b T Xy G

Xy ANy Xy Wb > e xg > (1.12)

Ny, Xg > A= Xy ™ b > xy >

Xy >a>b x> ¢ x> x> 0.

[2] The differential forms of this type are as in (1.11)
but with b =a*=a-iB, @ Bc R. The ranges of variation
of the variables x; are

Xy, Xgy X3 € Xy > 103

1.13
Xy, X P e x> 1> >0, ( )
[3] In this case the quantities e; can be taken to be

ey =%, eX*=c,=7+1i0,

ey=e;=a+1iB, eg=0, 8,7 0.

The differential form is given as in (1.11) with
hx) =[(x = )2+ 82 (x — )% + B%]x.

The ranges of variation of the variables x; are then

X1, Xp, X3 > 0y Xy 207X, Xy, (1.14)
The simplest types of degenerate differential forms
corresponding to cyclides of general type (1.4) are ob-
tained by allowing pairs of the quantities e¢; to become
equal. This is achieved by the prescription given by
Bécher, ® e.g., if ¢, and ¢, become equal then they do
so according to the prescription

ey =e,+€ x3=e,+ex’ (1.15)
where € is a first order quantity. With this substitution

and the subsequent use of the relations (1. 10) to take
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€, ==, the differential form becomes

ds?=[_ (3, +3’zz)>
T 4t

dx, " £ (v =) (x; — %)
x[xl'(fﬁ,‘ 1)_iZ=2

R 2
ea dxi] , (1.16)

where h(x) = (x = a)(x —= b)(x — ¢)(x —= d). If we make the
same substitution in (1.6) relating the coordinates v,%,

we obtain
ni=1-x', vl=x'

2_ (Xa—e) (x5 — eg) (xy — €g)
2 (63 = 94)(63 - 95}(03 - @6) ’

kY

2_ (¥p = ey) (g — eg) (xy — €y)

(eg— e5)(ey — e5) (e, = ¢g)’ 1.17)

z (x5~ e5) (3 — e5) (v, — e5)
T (es—eg)les — ey)es ~ eg)’

, 2 (Xg— eg)(xg = eg) (g ~ ¢)
Yo "~ (eg = e3)(eg = ey (e5~ €5)’

In addition we note that the coordinate surface for the
coordinate x;’ has the equation

(1.18)

From the form of the coordinates in (1. 6) we see that
the real linear transformations which preserve the
quantity $8,v,% form a group isomorphic to O(4, 2). In
fact the representation of a point in space—time by the
six coordinates is such that the generators L;; =y;0,,
-~ v;0,. are directly related to the canonical generators
of the conformal symmetry group of the wave equation.®

More specifically we have the relations

Liy,=3(Ky=Py), Liy=(/20(K) = Py), Ly={(i/20(K,-P,)},
Lig=(i/2)(Ky = Py), Lyg=1iD, Lgg=iNy, Ly=iN,,
Log=(i/2(P + Ky), Lys=M
Lyg=—-3(P1+Ky), Lig=-5(Py+K,),
Lyg=—5(Py+Ky). (1.19
Here we have used the notation of Refs. 3 and 4 for the
generators of the conformal symmetry group.

Taking note of these relations, we see that coordi-
nate systems of the type given by (1. 17) correspond to
the diagonalization of the generator Ly, =¥,9,, - ¥;3,,
This generator may correspond to a rotation or a hyper-
bolic rotation in pentaspherical space. If a hyperbolic
rotation, we may always use an O(4, 2) group motion
to ensure that L, =D. The resulting coordinate system
in space—time is then equivalent to one of the radial
coordinate systems discussed in reference 4. According-

ly in classifying differential forms of type (1. 16) we
need only consider those for which 0 <x;' <1,

~¢=1"d=0 then we have the

w2/ (" = 1) +3,%/x" =0.

Ly =iN,, Loy =My,

25

L45 :M].J

[4] If we choose a~ b
possibilities
a>x,>b>x,>1>x,>0,

Npg™>a™Ng, Xy >0 x> a, 1>x5,%,>0;

Xp>a>x3>b>1>x,>0; b>x,>1>x4,%,>0;

Xpy Xgy Xy > ;O > X5, Xg, %4 > 15 0> x5, Xg, Xy,

XpyXg >, b>x,>15 x,>a; (1.20)
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b>xg,x,>1, 0>x5,%, b>x3>1>0>x,,

b>%y % >1>0>x5 0>x,>1>0>x,,%,;

a>xy %3 >b; b>x,>1, 0>x4;

a>x,>b>1>x3>0>xy.

(5] fa=b*=0a+iB, a,Bc Rand c=1, d=0, then we
have the possibilities

Xpy Xy Xy > 15 Xy 005 >1> 0>y (1.21)
Xy > 1> x5, 54> 0.
[6] If we have a=b* as above and c=d* =y +6, 7, 6
€ R then the variables X,, X5, X4 can be any real numbers.

If in addition we allow ¢; and ¢, to become equal ac-
cording to the prescription of Bdcher,

ea=e,+€, Xyme,+ex,, (1.22)
The differential form is then
(24, ) [ dx,?
2 _
ds®= ( 4.° x (x" = 1)
(ey = x3)(eq — Xy) dx,"
{eg—eg)leg—eg) %/ (1= x,7)
deg®  dx,?
- =3 __ 1.23
+(»‘4 X3) (P(Y3) P(X4) £ ( )

where P(x) ={x - ¢,)(x = ¢;)(x = eg). For all such differ-
ential forms 0<,’ <1, Differential forms of this type
fall into classes in which the quantities e, e5, ¢5 can be
chosen as 0,1, or a.

[T1e,=0, e5=1, es=a; a>1.

The variables x5, x, vary in the ranges:

0<x,<1<x,<qa; 1<x,<a<x,; x<0<1<x,<a,

(1.24)

[8]6‘4:1, es=0, e;=a; a>1,

1<xy<a<x; x<0<x<l; x3<0<1<x,<g
(1.25)

Now by the usual prescription, the differential form
becomes, with ¢, =1 and eg=0,

=8 “H’zz})[ dx " . dx,"™
ds = ( 430* v (g -1)+(1-'\4)x2’(1—x2')

O0<xy<l<a<x,.

dx, " dx,®
+X4X3'(l—,\‘3') +X,4(1_x4) . (1.26)
There is only one differential form of this type.
(9] For this case all the variables x;’ (i=1, 2, 3), x,

lie in the interval [0, 1].

A further class of differential forms can be obtained
by taking
€y =05 +a€, e5=e5+¢,

x;=eg+ex;’, i=3,4,

(1.27
© in the resulting differential form

(-l +r%+y z)> [ ( T

If we also put ¢4=
we obtain

dxz
Plx,)

b X dx?
+ (xa =X ) <Q(x3’) - Q(X4') ’ (1- 28)
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where P(x) = (¥ — ¢{)(x - €,) (x — ;) and Q(x) = (x - @)

X (x = 1)x. This differential form corresponds to the re-
ductions O(4, 2) > O(3)® O(2, 1) and 04, 2)D> O(2, 1)

® O(2, 1) when expressed in elliptic coordinates in the
case of the two reductions O(3)> L and 0(2,1)D L',
Here L and L’ are second order symmetric operators
in the enveloping algebras of O(3) and O(2, 1),
respectively.

With the exception of the reduction O(2, 1)2 0O(1, 1),
which can be conformally transformed into a radial sys-
tem, we can in principle write down all the differential
forms corresponding to the reductions of type O(4, 2)

2 0(3)® 0(2,1) and 0(4, 2)> 0(2, 1)®0(2, 1) by consider-
ing degenerate forms of the differential form (1. 28),
but we do not do this here.

The remaining distinct type of differential form of
interest in this section is obtained by taking x, =¢eg
+€'x,” and ey =eg+ €’ subsequent to the substitutions
(1.27) and then allowing es~ >, We then obtain the dif-
ferential form

ds® = (@32 + yqz +3’52 +y52)> [ dx12 + dlez
4w’ x(l-x) %, 00" = 1)
wor oo fdxyt dxy?
+ X, (Xa —-X ) (———Q(xa,) ———Q(x4’) . {1.29)

[10] In each class we have 0<x,; <1, 0<x,’ <1. The
remaining variables vary in the ranges

’ ’ . ’ ’,
0<x"<1<x,"<a; 1<x;'<a<x,’;

? ’, ’ 4
X3 <O0<1<a<zxy; x'<0<x <1,

[11] A further dfiferential form can be obtained
from taking the limits a=1+¢€", x;"=1+¢€"x,”. This
gives one new differential form

ds? = ( 012+ +3’32+3’42)>[ dx,®
au? %(1 = xy)

dx,'® dx,"?
+ w0, (e, = 1) t <(1 %1 )xs”(xa’ -1

L7
%, ("= 1)

where all the variables lie between 0 and 1.

(1. 30

We have shown in this section how to get orthogonal
coordinate systems by various limiting procedures ap-
plied to coordinate systems of the most general cyclidic
type. We have as yet not fully understood in what sense
these procedures are complete.

Il. R-SEPARABLE COORDINATES FOR THE WAVE
EQUATION

In this section we give the coordinate systems cor-
responding to the differential forms in section I together
with the separation equations. We also present the trip-
let Ly, L,, Ly of mutually commuting second order sym-
metric operators in the enveloping algebra of Q(4, 2)
whose eigenvalues are the separation constants for each
coordinate system presented. We tabulate the coordi-
nate systems of interest starting with the most general
real cyclidic type.
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Coordinate systems of Class |

(1)—(5): (a) A suitable choice of coordinates is
l (x1 A x, - a)x, - a)x, — a)|1/?
R (a=b)a-c)a~-Na ’
}_ [(vl—b (5= B)(xg = B)(x, = D) ] 1/2
"R b=-a)b-c)b-1)b ’ 2.1)
}_[(ﬁ‘c (rp =€) (3 — ) (xy - )]1/2
R c—a(c—b)(c—l) ’
1 [(x1 = 1) (xy— 1 xg = Dix, - 1)] e
*=R A-al-b1-0 ’

where R = (1+[M] 1/2)0
abe

The solution of the wave equation then assumes the form
$=R®, where ®=01}_E,(x,) typically. The separation
equations for the functions E; are

d?E, 1 1 1 1 1 1\ dE;
dxjé +§(xj-(;+xj—b+.\’j—c+xi-1+\f> dx
(—2x +hy B+ lw; + 1)
E; =0, 2.2
T3, - al, - B, - O, =1, =0 2.2)

The operators L; whose eigenvalues /; are the separa-
tion constants are

Li=ia+b+o)(Py + K2+ 5{a+ b+ 1)(P, + K,)*

+rl@a+c+ 1P +E)2 =1+ e+ D(Py+Ky)E

+ ((l + ())1’\112 + (0 + C)z’\fzz - (b + C)N':;z

= (c+DNZ— (b + NS+ (a+1)M,E,
L,=%(ac +bc+ab)(Py+K;)*

+{ab + a+b)(Py+ K2+ 5 (ac+a+ )Py + Ky)?

~Ybe+b 4 ) (Py+ K2+ abM,® (2.3)

+acMy? = beN? ~ eNy %~ bNGE + aMy?,

L,=-tabc(Py +Ky)? - fab(P,+ K,)?
—tac(Py + K2 +5be(Py+ K2,

The coordinates x; vary in the ranges
Xy ra>b a0 ag > 1 x>0,

There are four more coordinate systems of this type.
We list below the complex transformation of the space
time coordinates which relates the coordinates of type
(a) to the new system, together with the new ranges of
variation of the coordinates x;. The separation equations
for the E,(x;) are the same in each case and the basis
defining operators can be obtained by the substitution
given. We now list the possibilities:

(b) (ta X, v, Z) g (iZ, X, v, Zf),
Xy, Xp At xg b
(e) (£, x, 8, 2)

Xy A>T Xy, Xg ™ b

(d) (t) X9, Z) i

~x, e,
~(x, t, iy, iz),
e~ xy Xy, Xy g ah e xg 1

(it, ix, iv, i2),

X Xp>a>b>x3 > cxy > 1,
(e) (t; X, y;Z _’(ta 1x,y,iz),
Xy, Xy X3 > @> Xy b,
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{6)—(7) A suitable choice of coordinates is

L1 (20 - a)(x, - a)(xs = @) (x —a)]”2
“”:E[ @ b= oa-a ’

1 [(xl—c)(xg~c)(xa—c)(x4—c)]”2
Y=R (c~a)c=b)(c-1c ’

1 [(x1 =)= D= 1)(x, = 1)]1/2
=R N-a(1-0)1-0 ’

(2.4)

where R =[1+ (x1%,%,%,/abc)t /2] and a =b* = a +iB,
a, Be R.

The solution of the wave equation has the form ¢y =R®,
where each of the E; satisfy Eq. (2.2). The operators
whose eigenvalues are the separation constants are

Li=1Qa+c)(Py+ K32+ 1(2a+1)(Py + K,)?
+2aM 2+ i(a+c+ D[Py + K2~ (Py+Ky)?)
— (B/8(Py+ Ky, Py + Ky} + (@ +¢) (M2 = Ng?)
+ BNy, My} + (a+ 1) (M2 = N,2)
+ B{N,, Mg — (c + 1N,
Ly=—1%(2ac+ o? + 83 (P, + K,)?
~12a+ ®+ (P, +K,)*?
— (2 +BIM? + Hac + a+c)[(Py + K)?
—~ (Py + K2+ 18(c + DIP, + Ky, Py + Kot
+ac(Ng? = Mp2) = cB{M,, Ngt + cNy?
+ (N2 = M,®) < B{M,, N,
Ly==5(a?+BO)[c(Py + Ky)? + (P, + K,)?]
+(ac/D[(Py + K )2 - (P, +Ky)?]

(2.5)

~ (cB/4N Py + K,, Py+ K}, where {4, Bj=AB+ BA.

The coordinates x; can vary in the ranges
(a) 2y, x,>Cc>%x3>1>x,>0,
) (¢, x, v, 2) ~ (it, ix, iv, iz),
where xy, X5, X3 > ¢ >x, > 1> 0,

(8) A suitable choice of coordinates is

2ty - o= )y = o) —c)] 1/2
t-H}—[ : (c_(12)(5'—11)3(0—(1);f /R’

206 = @)y — @) (x5 — @)y, — a) ] /2
x:Im[ 1 (a—ba)(a_c)s(a—d); ] /R, (2.6)

2 =[=x,x5x,x,/abcd*/2/R,

where

R— 1+Re [_2<Xx-a>(xz-a)(xa-am-a)] 1/2

(a=-d)la-c)a-da
and a=b*=a+if, c=d*=v+i6, @,8,7 6 R.

The solution of the wave equation has the form ¥
=R®, where each of the E; satisfy the equation

dzEj 1 1 1 1 1 1\dE
41 _Lyeey
dsz 2(xj—a+xj-b+xj—c+xj-—d+xj)dxj

(= 2% +4x 2+ Lx; + 1)
4(x; = a)(x; - b)(x; = o) (x; = d)x;

E;=0, 2.7
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The operators whose eigenvalues are the separation
constants are

Ly =(Q2a+ Y (M%= N3 + 6{My, N}

+ 2y + a)[ M2 -3 (Py - K3)?]
+ 3B M,, Py — Ko} + 3¥(Py— K)? = 20N,
+(a+B)[i(Py- Kp? - $(Py - Kp)% + My® = Ny?]
+ 38Ny, Py— Kot +18{Pg = Ky, Py - Kt
- (N, Mg} ~ (B/2/{M;, P, ~ Ky,
L, =(0?+ P2 +2ay)(N® — My?) — 2a6{ My Ny}
+ (P + 8%+ 209 [ (P - Ky)? = M) = vB{M,, Py - K}
+ (02 + BINE + 5 (¥ + 83)(Py - Ky)*
+ a3 (Py - K% - 2 (Py- K)? + Ny % = My
— (¥8/2 Py - Ky, Ny} = (ab/4){P, - K,, Py~ Kj}
- (B6/2XM,, Py - Ky } = (B6/21{Ny, P, — Ko}
+ ad{Ny, My} + (vB/20{P, - K,, My},
Ly = (0 + B[ 7N - My?) = 8N, My} + (7% + 6%)
X[ a5 (Py = K2 ~ Mp?) — (B/2{ Py - Ky, My},

The variables x; can vary in the ranges x; > 0> x,, X3, %4
and xy, X, X3 >0 > x,.

(2.8)

Coordinate systems of Class |1

These are the coordinate systems in which the opera-
tor 3(P,~ K,) is diagonal.

As has been discussed in Ref. 3, the R-separable
solutions of (*) then have the form ¢ = (Y~ cosy)
Xexpli(2F + 1)p]@(V,, ¥y, Y5, V), where Y2+ ¥i2 + 1,2
+Y;%=1 and the space—time coordinates are given by

po_ s Y

T Yy-cosd’ T Y,-cosy’ 2. 9)
PN £ W S

Y,—- cosy Y,~cosy

i{2F + 1) is the eigenvalue of the operator 3(P,— K,),
and F is a positive integer or half-integer. The function
¢ satisfies the equation

(T2, + T2+ T}, + T% + T3+ T2)d = - 4F(F + 1) &,
(2.10)

where [y, ==3(P; +K;), Ti3==3(P,+K,), T1y=-5(P,
+K,), Tyg=M,, T'y,=~M,, and Iy, =M,. Here we are
using the notation of Ref. 3. The problem of separation
of variables for coordinate systems in which 3(Py— K,)
is diagonal reduces to the problem of separation of vari-
ables on the three-dimensional sphere S; in 4-space.
Acting on the functions &, the operators given above
have the form

Typ=Y o= Y13, TDy3=Yd,- Y2,

Ty =Y19, - Y,0,
Ty =Y,0, - Y;2,.

Ty, =Y 3 - Y38,
T = Y105 - Y32y,

(2.11)

This problem has been solved by Olevski’ and the six
coordinate systems on S, for which (2. 10) admits sepa-
ration of variables have recently been investigated.®

E.G. Kalnins and W. Miller, Jr. 1745



In the interest of completeness we give here the six
coordinate systems, the separation equations, the op-
erators describing the separation, and some comment
on the actual solutions.

(9) Ellipsoidal coovdinates: A suitable choice of co-
ordinates is

2 _ (%1 — @){xy — a)(x; - a)

Ty'= p-al-aa ’
lez_ (4 - b)(x, = b)(xs— b)
{a-b)(1-0)b (2.12)
Yz__(x1-1)(xa—1)(x3—1)
- (a-DB-1n
Y32:£%§§1

where 0 <x3;<1<x,<b<x; <a. The separation equations
for ® = Ey (%)) E,(x,) E4(x;) have the form

@1[1 1 1 1]@
X

de, 2lx;—a x,-b x,-1 x| dx;

[4F(F+ Vx+hx, +1,) o _o.

Al — (- D), - Dx; ¢ (2.13)

The operators whose eigenvalues are the separation
constants /; and I, are
Ly= 5Py + K%+ 30(P, + K,) 2 + £(b + 1) (P, +K,)?
+aM?+ (a+ 1)M,2 = (a + b)M,?,
Ly=3b(Py +Ky)? = aMy? — abM,2. (2.14)

(10) Elliptic cylindvical coovdinates of Type I: A
suitable choice of coordinates is

Yy=Vxx,/a cosgp, Y,=vVxx,/asing,
Yzzml - !1)(972— ay/a{a - D,

Y3:J(x1 - 1)—(.9(2— 1)/(1— (l),

where 0<x; <1<x,<a.

(2.15)

The separation equations have the form for & = E; (x)
X E,(x,)A():

e, 17 1 1 2| dE;
3 + = +—

de*  2|x;-a x;-1 x;) dx;

(4F(F + D)x% + Lix; +1,] £

(x; = a)(x; - Dx,2 (2. 18}

;=0

wherei=1, 2,
dzA

ad—<5'z+l2A:0.

The operators whose eigenvalues are the separation
constants /; and [, are

Ly = M2 4+ 5(Py + Kp)? + a[ M,?% + (P, + K3)?)
+1la+1)(P, + Ky,
L,=-%a(P, + K

(2.1

an alternative choice of coordinates is obtained by taking
%, =sn?(py, k) and x, = (1/%) dn®(p,, k') where a=1/k%,
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We then have that
¥¢=8np; dnp; cosg,
¥1 = 8NP, dnp, sing,
3, = dnpy 50, (2.18)
Y3 =Cnpy cnpy,
where 0<p; <2K and - K’ <p,<K’, [Note: sn(z, k) is a
Jacobi elliptic function. ] In terms of these coordinates
the solution for ® has the form
& = (snp; dnp,)" K5, (dnp,)

X KES( snpy) [cosm¢

sinma¢ (2.19)

Here K%3(z) is an associated Lamé polynomial as de-
fined in Ref. 8.

(11) Elliptic cylindvical coovdinates of Type II: A
suitable choice of coordinates is

Y=V - Dx, - 1)/(1-a) cosg,
Yy =V - D{x, - 1)/ - a) sing,
Yz:fm,

¥, =%~ a, @ /aa =T,

where 0<x; <1<x,<a.

(2.20

The separation equations have the form ¢ = E;(xy)

X Ez(xz)A(¢)I
UM 1 2 1) dE;
dx;® 2lx;—-a x;-1 x;§dx;
[4F(F + V)x% + Ix; +1,]

a0, - a)(x; - D, (2.21)

Ei:()

where i =1, 2,
d?A

The operators whose eigenvalues are the separation
constants I; and /, are

Ly = M2+ {a~ V(P +K)? + a(M2 + 5 (P, + K,)?),
(2.22)
L,=i(1-a)(P, +K,)2.

These coordinates can also be written in terms of
Jacobi elliptic functions by the same substitution as
used for system 10. We then obtain

Y,=cnp, cnp, cos¢,

Y, =cnp; cnp, sing,

Y4 =s8np, dnp,, (2.23)
Y, =dnp, snp,.

In terms of these coordinates the solution for ® has
the form
@ = (cnp, enpy) " Ki 3(— (ik'/k) cnpy)

cosmao

sinmo (2.24)

><K£:(cnp1>[
(12) Spheroelliptic coordinates: A suitable choice of
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coordinates is

Y,=sinavxx,/a,

Y, =sina \[(xl - j(xz -1)/(1- a);
(2. 25)

Y,=sinoy/ (x; - a){x, — a)/ala - 1),

where 0<x; <1<x,<a, O0<a<m,

Y;=cosa,

The coordinate system can also be written in terms
of elliptic functions as with coordinate systems 10 and
11. This gives the parametrization:

Y,=sinasnp, dnp,;, Y;=sinacnp; cnp,,

(2.26)

Y,=sinadnp, snp,, Y;=cosa.

A typical solution for & is of the form A(a)E;(p) Ey(p,),

where
E1(p1) Eylpp) = Fii(= ipy +iK + K', py) (2.27)

a product of Lamé polynomials defined in Ref. 7 and

A(@) = (sina)'Ci (cos a).

[Here C%(2) is a Gegenbauer polynomial. ] The two op-
erators characterizing this system are

Ly =3(Py + K%+ 1(Py + Kp)% + M2,

2.28

L,=1(P, +K)? ++a(P, + K,)*? ( )

with eigenvalues — I(I + 1) and M?¢ respectively.
(13) Sphevical coordinates: A suitable choice of co-

ordinates is

Y, =sinasinfcos¢, Y,;=sinasinfsing,

Y,=sinacosf, Y, =cosa, (2.29)
where 0< @, Bsm, O0<¢ <2m,
A typical solution of the form A(a)B(B)C(¢) is
& = (sina)’ ChiL,(cos @) PT(cosB) exp(ime). (2. 30)

The two operators characterizing this system are
Ly =5(P; + K%+ 1 (P, + Kp)% + M2,

Lz:é(Pz+K1)2 (2.31)

with eigenvalues — /(I +1) and - m? respectively.

(14) Cylindvical coovdinates: A suitable choice of co-
ordinates is

Y,=sinacosp, Y,=sinasinf,

Y;=cosacosyp, Y,=cosasing, (2. 32)
where 0<a<mand 0<f, ¢ <27,
A typical solution A(@)B(B)C(¢) is
® = explime +ipBl(sina)®?(cos @)¥ -2~
X Fi (b~ F,a~F,a+b+1; -tan®a), (2.33)

where m=a+0b, p=a-0b. The two operators charac-
terizing this system are
Ly =5(P, + k)% and L,=M,? (2. 34)

with eigenvalues — p? and - mé, respectively.

Coordinate systems of Class |
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These are the analogs of the elliptical coordinates of
type 9. The difference is that coordinate systems of
this type correspond to the diagonalization of M,? rather
than $(P,- K,)%. We now list the possibilities.

(15) (a) A suitable choice of coordinates is

t=Q1/RWx,= @) - Q) = @)/ - )a - Dg,
x=(1/R) cosp, v=(1/R)sing,
z=(1/RW ;= B)(x3 = D) (x5, = ) /(b — @) (6 - 1)b

where

(2.35)

R=[VT =Dt = D, = D/{a= DB =1) + VX555, /ab].

The typical solution of the wave equation is ¥ =R®,
where 6 =E,(x,) E;(x,)A(¢). The separation equations

are the same as for system 9 with A(¢) =exp[i(2F + 1)o].
The variables x,, x5, X, vary in the ranges

Koy Xg>a>b>x,>1;
b>xp>1>05, %> 0; b5, %5, %, > 15

b>x,>1>0>%4,%y; a>x,,x3>b>x,>1,

The operators whose eigenvalues are the separation
constants are
Ly =(a+b)D*= }a+ 1)(P, - K,)?
+50+ V)P - K2 +1a(Py + K,)?
—10(Py+ K= NG, (2. 36)
Ly=abD*+ ;a(P, - K))% + 1b(Py - K2,

and, of course, L,=»M,%,

There are five further coordinate systems of this
type. In each case we choose the x and y coordinates
to be of the form

x=(1/R) cos¢,
Ly=Mg,

v=(1/R) sin¢, and the operator

The separation equations are the same as in system 9.
For each of these five systems we give the choice of R
and the coordinates / and z together with the form of
the operators L; and L,.

(16) (b) The modulation function R is

R= I:\/ (= Dxy = Dlxy = 1)/ (@a=1D(p=1)

+V{x, = B) (0, = D) (%, = ) /(@ = B) (b = 1) (2.37)
and the coordinates / and z are given by
t=(1/R)Vx,x5x,/ab,
2=(1/RWV{x,—a)(x; - a)(x,— a) /la= 0}(a=1a. (2.38)

The operators L, and L, are

Li=5(a+0)(Pi+K)i- e+ 1){P,- K)?

+ (b +1)NE+aD? - 10(Py + K)2 +1(Py - K)?
(2.39)
Ly==3ab(P)+ Ky)?+5a(Py- K;)? - bN,2.

The ranges of variation of the coordinates x,, x;, and

E.G. Kalnins and W. Miller, Jr. 1747



X, are

Xy ™ A>Xg, X4 >0y Xp>a >b>x5, %> 15

Xpp X3, %4 > 45 b >, X5, %4> 1;

a>Xp Xy >b>x,>1; and x,>a>b>1>0>x,, x,.

(17) (¢) This coordinate system is related to 16(b) via
the transformation (¢, x, v, z) ~ (it, ix, iy, iz) of the space—
time coordinates, The variables x,, x4, X, vary in the
ranges

Xg™a>x3>b0>1>%,>0 and x,>a>b>1>x, x,>0,

(18) (d) This coordinate system is related to 16(b) via
the transformation {t, x, y, z) ~ {z, if, iy, {) of the space—
time coordinates. The variables x,, x5, and x, vary in
the ranges x,, X3 >a>b>1>0>xg; b>x,, x3>1>0>x%,,
and a > vz,x3>b>1\0 - Xy,

(19) (e) This coordinate system is related to 15(a) via
the transformation (¢, x, y, z2) ~ (z, ix, iy, {) of the space—
time coordinates. The variables x,, x5, and x, vary in
the ranges x, > a>b > xg, xg > 1.,

(20) (f) This coordinate system is related to 16(b) via
the transformation (¢, x, v, z) = (2, x, y, it) of the space—
time coordinates. The variables x,, x; and x4 vary in
the ranges a > x> b > 1>x; >0 >x,

In addition to the six types of coordinate systems we
have discussed in Class III we will also include co-
ordinate systems corresponding to the differential form
of type (1.18).

(21) A suitable choice of coordinates is

(z +it) :lﬁ [Z(XZ' a)(xg — )y ~ a)] 1/2’

(a-b)(a-1a (2. 40)
x:%cos@, y :}ésingb,
where
R=[Vl,- D= Dlx,- )/(a- DG -1)
+Vxgxx/ab]). (2.41)
The separation equations are given by (2.13). The op-

erators whose eigenvalues are /; and [, are
Ly =2aD?+ 5 (a+ D[{Py - K3)% = (Py— K]
— 3B(PoPy + Kol) + 5 ol (Py + K = (Py+ K)?] = N,
(2.42)
L, =(0® 4 BYD? 44 ol(P, - Ky)? = (Py— K)?]
+ 58Py - Ky, Py - Kb
The variables x,, x; and x, vary in the ranges
Xy Xgy Xy > e x> 12 x4, X4 > 0
Xg > 1> 0> x5, %,

(22) Coordinate systems of this type can be obtained
from those of type 21 via the transformation (¢, x, v, 2)
- (it, ix, v, iz). The variables x,, x5, and x4 lie in the
ranges xp, Xy > 1> 0> %, 0>y X5, 445 and 1> x5, 23>0
= Xy,
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(23) A suitable choice of coordinates is

o 1T2(x, - a)(xy—a)(x, —a)]*/2
(z+zz‘):—-[ 2 — ] P
R (a=b)a-c)a-d) (2.43)
x:%cosq‘), :ﬁsmd),
where

R =Rew - Imuw,
v [2Fe= 0l = )y - ) 12
T (c=-a)c=b)c-qd)
The separation equations in the variables x,, x5, and
X4 are

d’E +1 1 +__1__+ 1 1 1dE;
a?xi2 2{x;—a x; -0 —-c x;=d] dx;
| -2
[4I<(F+1xi +11xi+12] £, =0. (2. 44)

4(Xi - (l)(Y,- - h)(Xi - C)(Xi Il (I)
The operators whose eigenvalues are /; and /, are
== 2aD% - 2yN2 + s(a+ NP, K} - {Py, K}

+50[py2 —P32+K32—K0 1= $8LP, Ko +{P3, Ky, )
(2.45

Ly=(a?+p5D*+ (¥* + ®)N® + s a¥ {PI}) Kyl ={Py, K}
+3ad[Pf— P + K — K21+ BO(P Py — K Ky)
- %SY[{ng Ko'ﬁ“{Po, Kytl;

the variables x,, x,, and x, can assume any real values.
(24) A suitable choice of coordinates is

t+z :%Im[(xl - a)lxy—a)(x; - a)]l/zy

(a-0)%
el 1)1 1 1
“f7R (=0 " 2)xy—a x,—a x,—af]’
1 1 .
,x:.-ﬁcosgb, 3 7»R-sm¢,

(2. 46)

. . 1/2
where R =2Re [(x‘ - (1)2-:12_—1)’;)2(33 — a)] .

The separation equations in the variables x,, x5, and x,
are

APE, 1 1 dE;
dx; + {xi-(1+xi—1J dx;

[4F(F + 1)x 2+ 1yx, +1,)

T Ca E,=0. (2.47)
The operators whose eigenvalues are /; and /, are
Li=a[4(Py- P~ — (D +Ny)?]
+ -;-B{Pa - Py~ K,— Ky, D+Nj}
o} (Py+ Py + Ky = K)) 2~ L (Py= Py + K+ Kp)?
- (N =D+ 3P+ Py + Ky~ Ky)?]
~ UP + Ky, Py + P+ Ky= Ko,
Ly=-4(P,+K;)%+ 5(a?+ B[ (P, +P3 + K, - K)®
— Py Py + K+ K)? - (N - (2.48)
~ P+ Pyt Ky Ky)®l -+ 50 - Bz)
X[ Py = Py = Ky= K3)* = (D + N))?]
~taf{Py— Po= Ky~ Ko D+ Ny}
+ (P +Ky), BD = Ny) = 3Py + Py + K= K3
E.G. Kainins and W. Miller, Jr. 1748



(25) This coordinate system is of similar type to co-
ordinate systems 10 and 11 appearing in Class II. A
suitable choice of coordinates is

t=Q1/RW{x; = a){x; = @ /ala=1),
x=(1/R) cospv (x; = D){x, - 1)/ (a=T1),
v=(1/R) cosp, z={(1/R)sing,

where (2.49)

R=v(x; -~ 1){x, - 1)/{a-1) sind + vV x,x,/q,

and X3, X, <0, or 0 <x,x,<1.

The solution ¢ of the wave equation has the form
==R®. The separation equations for & =E, (x;) E,(x,)
XA(P)B(¥) are
din+1[ 1 2 +1:|dEi

Z 5|7 < | v,
dx®;  2|x;—a x;-1 x;|dx;

. [4F(F+1)(x; = D2+ L(x; = 1) +1,]
4(x; - a)(x; - 1)%x;

E, =0, (2.50)

where i =1, 2:

d’A 2 A*B
= - 1) =1,B.
;ZEZ (2F +1) ‘A, (a 1)(1@'}{ Iy

The operators whose eigenvalues are the separation
constants are

Ly =(a-D[D?+ (P, ~ K)?] (2.51)
=[N 2+ 5Py + KB +3(a = 2)(Py + Ky)?
Ly=%{a=1)(P, +K,)% Ly=M,"
(26) A suitable choice of coordinates is
t=(1/RW ({5 = a)(x, = @) /la=1),
x=1/RcosiV ~ x x,/a,

v=(1/R)cos¢p, z=(1/R)sing, (2.52)

where

R=[Voxix,/asind +v{x, = (v, - 1)/ (1 = a)
and x; <0 <1 <x,<aqa,
The solution ¢ of the wave equation has the form

=R&. The separation equation for & = E; (x,) E,(x,)
xA(¢)B(¥) are

#E, 1T 1 1 2)dE,
dx;® 2 |x dx;
[AF(F+ U)x 2+ 1yx; +1,]

4(v; - a)(x; - 1)x;?

+ .
i—a x; =1 x,

E,=0 (2. 53)

where 7 =1, 2:

A*A 2 &*B ,
;[d’) :—(2F+1)A, (Id—wzzlab.

The operators whose eigenvalues are the separation
constants are
Ly=—a[D? + H(P, - K;)?] = N} + 1(Py+K,)?
+ila+ )P+ Ky)?,
Ly=-%a(Py +K,)%, L,=M,?2 (2.54)

1749 J. Math. Phys., Vol. 18, No. 9, September 1977

This completes the list of coordinate systems of Class
II1.

Coordinate systems of Class IV

Coordinate systems of this type correspond to the two
direct product reductions SO(4, 2) D SO(2, 1)& SO(2, 1)
and SO(4, 2) D SO(3)€ SO(1, 2). In each of these cases
coordinates can be chosen from the nine separable
classes of orthogonal coordinates on the two-sheeted
and one-sheeted two-dimensional hyperboloids and the
two separable classes of orthogonal coordinate systems
on the two-dimensional sphere. The coordinate systems
on these manifolds are given in the Appendix. In classi-
fying coordinates of this type we give the general form
of space—time coordinates in terms of the above men-
tioned two-dimensional manifolds.

(1) Coordinate systems corresponding to the reduction
S0(4, 2) > 80(3)® S0(1, 2).

A suitable choice of space—time coordinates is
t= Ez/(gl + ‘53), X = gl/(gl + &3);

(2.55)
y= gz/(gl + ga), 2= gs/(&l + 53),

where 512— ‘522_ 532:— 1 and é‘]z + 522 + §32:1u

With the exception of coordinate systems of type 8
(which can always be chosen such that D is diagonal)
there are 16 coordinate systems of this type on the sin-
gle and double sheeted hyperboloids.

In each case the solution of the wave equation has the
form

=& + &) o (Ly, & £9)0(41, &5 &),

where the functions ¢ and 0 satisfy the equations
(M2 + M2+ Mo =~ 11+ 1),
[Py, K} + D310 =10 + 1)6, (2.56)

and ! is a positive integer. The operators correspond-
ing to each of the 16 possible coordinate systems can
then be read off from the Appendix, if we make the
identifications Ny =3(Py+K,), N,=D, and M s =3P

— K;) in the case of the SO(1, 2) coordinates.

(2} Coordinate systems corresponding to the reduction
80(4, 2) 2 80(2, 1)® SO(2, 1).
A suitable choice of space—time coordinates is
t= g1/(£1 -+ ‘53), X = 52//(51 + 53),
¥ = gg/(gl + 53), Z :ga/(gl + 53),

where £, - £,5 - gf=¢, §%-EP=n¢, €=x1.

(2.57)

Again with the exception of coordinate systems of
type 8 there are 64 coordinate systems. In each case
the solution of the wave equation has the form
=(&4 + &) (&, & &)oLy, Ls &3), where the functions ¢
and 0 satisfy the equations

(N2 + N2 MDY =35(7 +1)8,

[—{P1,K1}+Dz]¢) =i +1)o, (2.58)
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and j=-3+1ig, 0<g <%, for globally defined
solutions.

The operator corresponding to the SO(2, 1) algebra
associated with the vector (&, &, &) can be read off from
the Appendix with the identification N, =3(P, - K;), N,
=D, and M;=3(P; +Ky).

We have looked at four classes of coordinate systems
for which the wave equation (*) is strictly R-separable
and found 106 distinct such coordinate systems. This
added to the results of Ref. 4, gives a total of 367 in-
equivalent R-separable coordinate systems for the wave
equation (*).

APPENDIX

In this appendix we list the orthogonal separable co-
ordinate systems for the two-dimensional sphere,
single-sheeted and double-sheeted hyperboloids. In each
case we list the symmetric second order operator in
the enveloping algebras of the symmetry groups of these
manifolds which describes the coordinate system. The
coordinates (with the exception of the single-sheet hy-
perboloid) can be found in the article by Olevski’ and
the operator characterization is due to Winternitz et
al.®

l. Coordinate systems separable on the two-dimensional
sphere

i+t =1

It we write the generators M, = ;0 — £50¢,, My= 1§10,
= £30¢,, and Mz=1{0¢, - {,0¢, the coordinate systems
and operators are:

M =xx,/a, (E8)2=(0q- DA =-x,)/(a-1),

P =(v - a)(x,-a)/ala=1), 0<x,<1<x,<a.
(A1)
The operator is L =aM,?+ M2,
£'® = (cosxy, sinx; cosx,, siny; sinx, sinxy,). (A2)

The operator is L =M%,

1l. Coordinate systems on the one- and two-sheeted two-
dimensional hyperboloids

I R A T
We adopt the notation Ny = &105 + £28;, Np= 4§10,
+ &30y, and My =£,0, = &93,,.

(&P =x110/a, (E8)7=(x = Dlxp=1)/(a- 1),
(EM2 = (xy —a)(a—x5)/ala-1),
gL D (g2 - (g2 =

The coordinates on £: £=-1 are obtained by the sub-
stitution €% ~7£% and x, <0<1<x,<a. The operator
is L =Ny%+aN,2.

1<x <a<x,,

(&) (a3)

(622 = (= 1) (1 - x)) /(e =~ 1),
(£82)2 = - xyxp/a,
(82 =(xy — @) a - x,) /ala-1),

2 <0<l<a<x, EP.£9=1, (A4)

1750 J. Math. Phys., Vol. 18, No. 9, September 1977

The coordinates on the single-sheeted hyperboloid £- &
=-1 are obtained via the substitution £—~i£ and 1 <x,,
X, <a; x,%,>a. The operator is L =N,;%- aM,®.
(&9 +ig,®N2=2(x - @) (x; - @) /(a=b),
(A5)

a=br=a+iB, (§%)2=—xx,/ab, x, <0<x,,
ED B =1, For ¥ £8Y=_1 we have £~4£ and

¥y, X, >0, The operator is L = a(M,® - N,%) + p{M,, N,}.

EW 4 5® =V Tax,,
LW 5, oV xS,V = x, /0 VX, /Xy,
EOVT-RG-T, x<0<l<x, (46)
g9 . £ 1. The coordinates on the single-sheeted

hyperboloid are obtained via the substitution £—i§&
with xy, x,>1; 0<x,x,<1; x,x,<0. The operator is
L=N®— (N, + M,)?2,

8 5O VR
%) = £, =~ (Vo /x, +V, /5 +V 247, ),
L9 =V - Dlx, = 1), 0<x <1<x,, (am

£8). £% =1, The coordinates on the single-sheeted
hyperboloid are obtained via the substitution £—-¢§
with %, <0<x,<1. The operator is L =N%+ (N, + M,)2.

E® 45,0 Iy,
& 6) g (6) _(\1 _ Xz [4(_ 9”1”52)3/2];
WO =3[V X, x -V = x /x,], x <0<, (A8)

£ . £6) — 1, The coordinates on the single-sheeted
hyperboloid are obtained via the substitution £-~i£
with X1, x, > 0. The operator is L ={Ny, N, - M;}.
El(q) + g2(7) :\/"YI,
£ =x0 1,

7 v a2
£« £, =1/Vx +V X %57,

Xy, X, > 0. (A9)

E7 . £ =1, The coordinates on the single-sheeted
hyperboloid are obtained via the substitution £—~i§
with x; <0 <x,. The operator is L = (N, + M,)2.

£® — (coshx, coshx,, coshxy sinhx,, sinhx;),
E(B) R g(B) =1
gm = (sinhx; coshx,, sinhx; sinhy,, coshxy),

£8) = (sinx, sinhx,, sinx; coshx,, cosxy),

E®, E®) _ _ (A10)
The operator is L = N;2,

£9 — (coshx,, sinhxy cosx,, sinhy; sinx,),

I

£4(9) i i (AlD

£ = (sinhx,, coshx; cosx,, coshy; sinx,),

OO _ _q
The operator is L =M,
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Continuum calculus. Il. The heterogeneous continuous
functional differentiation applied to the Feynman path

integral
L. L. Lee

School C.EM.S., University of Oklahoma, Norman, Oklahoma 73019
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The continuum calculus proposed previously [L. L. Lee, J. Math. Phys. 17, 1988 (1976)] is here extended
to the study of continuous differentiation of a functional. The result, called HCFD, is shown to be the
inverse operation of the functional integration for Feynman path integrals, in analogy to the case in
ordinary differential calculus. The class of “separable” functionals is defined, which are useful in the
derivation of the theory, playing a role similar to that of the characteristic functions in the Lebesgue theory
of integration. A Radon-Nikodym type derivative is introduced in the definition of the continuous
derivative for a general Banach algebra. This development constitutes a functional calculus of the
continuum type. Comparisons with other types of functional derivatives are also made.

1. INTRODUCTION

In a previous paper' (hereafter referred to as I), we
developed an operational calculus, called the continuum
calculus, consisting of two operations, the y differentia-
tion and the p integrations on functions. We were able to
characterize the Feynman® path integrals of certain type
of functionals found in quantum mechanics as the out -
come of the interaction between the proposed p integral
and the ordinary integral (Riemann or Lebesgue). The
resulting formula for the functional integral was given
in closed form of known mathematical operations, in
contrast to the previous / projection method of cylinder
functionals® and subsequent n-fold integration with re-
spect to a weak distribution of measures.* This formula
is general in that it does not depend on the Gaussian
measure which underlies most past calculations and
admits finite limits of integration. Applications to the
quantum harmonic oscillator? and the electron—phonon
interaction® reproduced the well-known results. It was
also applied to the probability theory of infinitely
divisible distributions® and other branches of mathe-
matics. In this paper, we report another application of
the continuum calculus, the interaction of the p integra-
tion with the ordinary differentiation in functional cal-
culus. The outcome will be called the heterogeneous
continuous functional differentiation (or HCFD). The
HCFD is found to be the “inverse” operation of the
functional integration proposed previously,® in the same
sense that the ordinary differentiation is the inverse
operation of ordinary integration. The HCFD and the
functional integration constitute the basis of a functional
calculus, upon which our future developments will
depend.

The utility of the Feynman (—Wiener) integral in
many branches of physics has generated recent interests
in its study. Notably the applications of the Feynman
integral method to the studies of fluid turbulence,” laser
beam propagation in random media,® multichannel
scattering,® etc., aside from its usual applications in
quantum mechanics and field theory. Past studies of
this integral met the difficulty of establishing a satis-
factory measure in an infinite-dimensional space, as
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pointed out by Skorohod,* and touched upon by Xia. "
This difficulty is partially removed by the continuum
calculus approach.! We demonstrated in I that for cer-
tain types of functionals the integral exhibits a two-tier
structure involving two measures, one on the function
space, the other on the base space. Here we present
some further developments of the continuum calculus,
the functional differentiation.

In Sec. II, we give a heuristic demonstration of the
HCFD method on a simple “separable” functional of the
exponential type. With insight gained therefrom, we
formulate the definition of HCFD in Sec. III in a general
complex Banach algebra. We prove the important
“inverse” theorem, showing that the HCFD is the in-
verse operation of the functional integration introduced
earlier. In Sec. IV, the method is applied to a known
functional as an illustration. A comparison is made
with the functional derivative introduced by Friedrichs.?
We cite future developments in the concluding section.

To make this paper relatively self-contained, we re-
capitulate some of the important results from I. Let B
be a complex Banach space, and A, the Banach algebra
constructed from the collection, C®, of functions from
B to C, the complex numbers. Let (B, S, u)bea
measure space'! on B, and (4,, S,, m) a measure
space on A,. (S5, S, being the ¢ algebras, and u, m
the measures on B and A, respectively). The » dif-
ferentiation, R/R¢, of a function f{f)cA, has been shown
to be

) [ 1
||}l1!£% ff(t) = eXp[E 1nf(t)] ’

for t€ B -~ N, N being the closure of the kernel, N, of
f, whenever the limit exists. A more rigorous limiting
¢-0 type definition can be given as follows: for every
e>0, there exists 6 >0 such that

£+ ) = (D[] <e

whenever ||b|| < 5. If such an f* exists at (< B- N, we
call it the 7 deviative of f(£) at ¢, i.e., Rf(¢)/Rt=/F*(0).
We can recognize (1.1) as a measure of the instantaneous
ratio of a function at the neighborhood of a point £, in

(1.1)

R
R_lf(l)

(1.2)
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the same sense that df(¢)/dt is the measure of the
instantaneous difference of f(¢), which is of concern in
ordinary differential calculus.

We point out some prominent algebraic features of
this new operation. The Banach algebra, A,, can be
considered as a commutative ring over the complex field
with some scalar multiplication properties. The ordi-
nary differentiation, d/dt, is linear with respect to the
additive part of the ring operations, i.e.,

f,g€Ag o, BeC.
(1.3)

A lar®)+ 8g0)= a e £+ Br(0),

Whileas the » differentiation, R/R¢, is “linear” with
respect to the multiplicative part of the ring operations,
i.e., it is “additive” (or rather “multiplicative”) with
respect to products,

20 0e= (570) (7 20) . sg<ay

and “homogeneous” with respect to exponentiation by
scalars,

(1.4)

R%[f(z)“]: [R%f([ﬂ , JEA,, acC (1.5)
[for proofs, see (I.2.4) and (I.2.5)]. In a certain sense,
the situation is similar (but not identical) to that for
Fourier transforms. The Fourier transformation, }, is
“additive” (“multiplicative”, sic) with respectto
convolution, * 12

FE* g0)= Urn)(Fg)).

However, Fis homogeneous with respect to multiplica-
tion by scalars,

Haf ()= alFF ().

(1.6)

(1.7

The p integral was then obtained through a search for
the “primitive” of the » differentiation, and is related
to the ordinary integral by

Plr (D)4 —expl [ puld) Inf(1)], ECB.

The functional integral, I
functionals,

¢lvl=exp/ w@)f@), f:c—c (1.9)

was found by interacting the p integration with ordinary
integration,

1($)=exp [, 1(d) In[ [ ,m(dy(t)) expfy(2))

(1.8)

, for the exponential type

(1.10)

whenever the successive integrals exist. Details can be
found in I.

l, ECB, FCA,,

Il. AN EXAMPLE OF FUNCTIONAL
DIFFERENTIATION
We demonstrate in this section the method of con-

tinuous functional differentiation by investigating a sim-
ple functional of the type,

ply)=exp [ dtb(t) y(1)?, (2.1)
where y is a complex function defined on real numbers,
ye C®, ¢ is defined on C* with complex values. In con-
ventional theory of functionals (see, e.g., Volterra'?),
the one-point functional derivative of a given functional,
¢[y], at point £, 0<¢<1, is defined as,

A‘wty]zf‘dté—yv sy (1),

where A'} denotes the first order variation of the func-
tional ¢[y] with respect to the variation 6y{(¢) in y(¢).
The nth order functional derivative at »n distinct points,

(2.2)

0<t, <t,<...<t,<1, can be defined recursively and given
the notation,
5" n 5
Sy --ony VI sy e 2.3
5y(t1)°°-6y(ln)w[y] [m ay(,i)]d)[y] (2.3)

We intend to find the limit of the nth order derivative
(2.3) as n— <« and ¢ becomes the continuous index,
0<t<1. We first observe that the discrete (* projec-
tion) representation of (2.1) is,

BLPY] = expd bt )y (e, .

We need a formal definition of a functional that is
“separable”.

(2.4)

2.1 Defintion: Separable functionals: A complex valued
functional, ¢[y]on CF is called separable iff its /2 pro-
jection under the projector, P, ¢[P v], can be decom-
posed into an » product, ¥ #n,

olP1=1170) (2.5)

for some functions f, :C —C, and ¥, being the projection
of y(#) by P_ into the ith interval, (cylinder functionals).?

This definition can also be extended to the complex
Banach space. Examination of (2.4) shows that (2.1) is
separable, with f,(v,)= exp[b(¢,)y(¢,)?],

olPy] =IL exp[b(s,)v(¢,)2]. {2.6)
Now we apply the nth functional derivative (2.3) to (2.6),

=11 (=2 ~1 2 :
b, ziI}1(6y(ti )) ¢[p"y]—il;ll [6y(ti) expb(t )y(t.')]- 2.7
Carrying out the differentiation,
D, =11 [26(1,)y(t,) expb £,y ¢, 7). 2.8)

As n— and supAt, — 0, the n product approaches the

l p integral !

lim I1[26(;,)(t,) expb(t,)y(t, 1% = PL e > [26(0)y (1) expb(Dy (£17]

ne= i s
sup Aty =0 :expf dtIn[2b(4)y(t) expb()y (£P] = expf at b(£)y (] expf dtInb(t)y(#)]. (2.9)
If we apply the p 1ntegral formula earller expressing the nth order derivation in the operator form, we have

lim =

o <<3y(t )> J= exp fyat lnéy(t) oy
suplt;~0

=exp’ dtIns—rs ()epr(t)y(t — exp f; dt In2b(t)y (¢) expb(t)y ()2 = 29[y lexp [ydtInb(t)y(s). (2.10)
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The same result is obtained. Therefore the operator
approach is applicable to “separable” functionals in
carrying out the continuous functional differentiation,
We shall call the derivative thus obtained the heterogen-
eous continuous functional derivative of ¢[y], to stress
the fact that the continuous index, ¢, runs from 0< /<1,
We extend the definition to a general Banach space in
the following.

I11. THE CONTINUOUS FUNCTIONAL
DIFFERENTIATION

Let B be a complex Banach space. Let A, be the
Banach algebra formed from the usual construction on
the collection of complex valued functions from B to
C, i.e., CB, with C complex numbers. Let (B, S, i)
be a measure space on B, and (4,, S,, m) a measure
space on A, (S, and S, being the o algebras, and y, m
the corresponding measures for B and Ay, respectively)
The functionals are defined from Ay to C, ¢:4, —C.

We consider the special type,

oly]=exp [ u@) f),

where f is a complex vauled function, f:C —C, and
ECB.

(3.1

Under suitable conditions, which for the moment we
do not wish to elaborate, a Radon—Nikodym! type
derivative, g(y(#)), g:C —C, can be found such that

Sy ma fo0)= f_nld) nexplr (y(e)]
rj dl)ln] mAdy () gly ()

for some FCA,. In case such derivative exists for the
given f, we can define the continuous functional deriva-
tive of (3.1) as follows.

(3.2)

3.1 Definition: The helevogeneous conlinuous func-
tional derivalive ina Banach space: The continuous
functional derivative, Df(cb), of the exponential functional
(3.1) is given to be

D/[®]=exp | n(at)ng(y(1)) (3.3)

if such integral exists. g being the (pseundo) Radon—
Nikodym derivative of exp(f) as defined by (3.2) for
some FL Ay,

We called g the pseudo-Radon—Nikodym derivative
because it is not clear whether exp(f) is a normal mea-
sure or can be transformed into an equivalent measure
on F such that m is absolutely continuous with respect
to it.'® We adhere here to the definition (3.2). More
research is required.

We can also write (3. 3) in the operator form,

P uldt)
E [81;4 (y(t))] - ly]

= expru(dt) lna—m - oly].

D [¢]=
(3.4)

It is then an easy matter to show that HCFD is the
inverse of functional integration.

3.2 Theovem. The inverse operation of functional
integration: For a functional of the type (3.1), the
heterogeneous continuous functional differentiation de-
fined in (3.3) is the inverse operation of functional in-
tegration on ¢[y]. Let the functional integral of ¢ be I,
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then
D[1[6]]= olv]. (3.5)

Proof: If the functional integral exists for ¢[y] on
FCA,, (1.10) gives

Llo]=exp | pdD)n | m(dy(D)expsiy(r)

To differentiate (3. 6) according to (3. 3), the pseudo-
Radon—Nikodym derivative can be easily identified as
exp(f) in (3.6), and

DL [e]]= expjé pldt) Inexpfly(t))
= expf w(d)fv(t)) Q.E.D. (3.7

We see that D,(I [ )= ¢: therefore D, is the left inverse
of I similar to the situation in dlfferentlal calculus,

(3.6)

IV. APPLICATION OF HCFD AND THE DERIVATIVE
OF FRIEDRICHS

In this section, we shall integrate a known functional
with a finite limit of integration, then differentiate it
according to HCFD to recover the original functional.
Consider the functional,

dlyl=exp], Y2y (1)

whose functional integral with a Gaussian measure has
been investigated in I. When a Gaussian measure is
used, the limits of integration are usually improper,
and the final integral is independent of the limits, i.e.,
it is no longer a functional after integration. In the
continuum calculus, it is possible to integrate with finite
limits without the Gaussian measure. Now we choose
the limits to be, —=<y(f)= x(1), x({) a finite function.
The functional integral of (4.1) is then

4.1)

I"[eb]_ expj L Inj e (l,\'(/)epr(/)y(/)

exph({)x(t)
0

1
Jdi Inb(¢).

= expjodl In

= ¢lx|exp- 4.2)

The resulting integral is again a functional of x(/). Now
we seek the continuous functional derivative of (4.2)
with respect to x(/). Noting that (4.2) can be written as

expb(H)x(l)
I{o]= expj dt an—
= expj diln f" Dav(e) expb(Dv (D). (4.3)
We identify exp[ Fx()] of (3.2) as [expb(£)x(1))/b(t) and

glx(D)) to be its ordinary derivative, exp[b(l)x(/)] The
derivative, D,, is then, according to (3.3),

Df[I}‘[M:expj “dt Inexph(Dx (1) = d|x].

This implies again Df(If[‘ ])=¢. That D, is inverse to
If has been shown for this example.

(4.4)

We note that at times the proper derivate 5/6y(¢) to be
used with our formulas differs from the conventional
functional derivative by a factor of the Dirac delta func-
tion. The application of our derivative is also akin to
that of the ordinary partial derivative, 3/2y,, again here
without the Kronecker delta.

Also a remark on the functional derivative proposed
by Friedrichs® is in order. Friedrichs defined the
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derivative, 8/8y(t)dt for a cylinder functional ¢[y]
= ¢[P »] under the projection operator S by

o] 1 8 1
Pyl=

)
Sy(Ddt ¢ly]= A, 3y, [ A, By, (4.5)

¢(y1’ "ty n)a
for te C,, C, being a measurable interval, and 4, is
the measure of C,, also P y(t)=(3,,*, y;,***, ¥,). In
the discussions ensued for the case of quadratic
functionals,

yl= [dr dsy(r) blr,s)y(s),

The definition {4, 5) does not differ from the conventicnal
functional derivative!® (2. 2) appreciably, at least for
the particular case considered by Friedrichs,

b(r,s) symmetric. (4.6)

2fdsjdtw b(t,s) y(s) 4.7

Ju ()éy(t) at ¢aly

for some integrable function on w(#). While for the
ordinary functional derivative,

5¢2 = [ar [dsy(r) b(r,s) (s, 1)+ [ar[ds 8(t,7) blr,s)y(s)
zzjds b(t,s)y(s). (4.8)
Therefore,
Jdtw( t) ~2fdsfdtw )bt s)y(s), 4.9)

which is exactly the same result.

V. CONCLUDING REMARKS

We presented in this work a formula for the continuous
functional differentiation of a functional, which was
subsequently shown to be the “left inverse” of functional
integration given in paper 1. In the development, the
operation of potentiation, or p integration, again played
an important role. The continuous derivative is essen-
tially the result of the interaction of the p integration
with ordinary functional differentiation. We hope to
expound the detailed theoretical implications by employ-
ing measure theoretical, topological, and algebraic
methods. Some ground has been broken by the efforts
of Morette-DeWitt,'® Skorohod, * and Xia. !* We shall
have occasion to comment on this. New avenues of
development remain to be explored, such as the homo-
geneous continuous functional differentiation, integral
formulas for new types of functionals, and also
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differential equations for functionals. The physical
applications of Feynman integrals often times involve
complicated functionals and their various derivatives,
such as in the theories of turbulence,” and laser beam
propagation, ® Careful analyses are required.

Of immediate interest is the characterization of the
functional integrals of functionals of the type,

= [Jdtf(y(t)), f:C—~C. (5.1)

A differentiable homotopy approach was proposed in
paper I. However, a uniqueness theorem is needed to
define its applicability in general. The solution might
be offered by a generalized distribution theory!® ap-
proach. This is under investigation and will be reported
subsequently.
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It is proved that in a class of Euclidean Higgs theories, a single index serves to describe both the gauge

field and the Higgs field topologies.

1. INTRODUCTION

The study of nonperturbative aspects of field theories
has led to considerable interest in their global topologi-
cal features.! In spontaneously broken gauge theories,
this was centered at the beginning®*® just on the behavior
of the Higgs fields at spatial infinity. In particular,
Arafune, Freund, and Geobel® showed that, for the
SU(2) Georgi-Glashow model, the covering of the 2-
sphere at infinity by the isotriplet of Higgs fields has a
mathematical description in terms of the Kronecker in-
dex.

Recently, however,? it has been realized that in four-
dimensional Euclidean space-time, the Yang—Mills
field itself has a topological characteristic of its own,
independently of the scalar fields. This is the Pontrya-
gin index which has an integral representation in terms
of the product of the curvature and its dual.

In: Euclidean space-~time, of course, a new analysis
of Higgs topology has to be undertaken since the rele-
vant domain is now a 3-sphere. This is the subject of
the present paper. Whereas, in Minkowski space, it is
the requirement of energy finiteness that restricts the
range of the Higgs fields, in Euclidean space this is re-
placed by the requirement of action finiteness. The
range of the fields at Euclidean infinity thus defined will
be called the Higgs asymptotic space.

There are two cases where the asymptotic space is
such as to allow an integral formula for the Higgs topo-
logical invariant to be written. They occur when the as-
ymptotic space is either a 3-sphere or a 2-sphere.
Since ,(§%) =7,(5%) =Z, the invariant both times is an
integer. Higher dimension spheres are not relevant as
78" =0 for n>3.

The former applies to an SU(2) theory with a complex
doublet x, of scalars with a Higgs potential of the form
U(x)=(x"x,~17. For simplicity here and elsewhere,
all parameters have been set to unity. The latter would
apply to a theory of the type devised by Georgi and Glas-
how rather than Weinberg, which involves an isotriplet
¢, with the potential U(¢)=(9,0,- 1),

It will be proved that in each theory the associated
topological integer is identically equal to the Pontryagin
index. This means that there is a one-to-one corre-
spondence between sectors in the configuration mani-
folds of the gauge and Higgs fields. In particular, in the

AResearch supported in part by the National Science Founda-
tion under Grant No. MP875-20427.
P Junior Fellow, Harvard University Society of Fellows.
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single pseudoparticle sector, the index of the Higgs
fields must be unity. Account of this fact should be
taken in any analysis of tunneling in the vacuum of a
spontaneously broken gauge theory.

I1. AN EXAMPLE WITH S* HIGGS ASYMPTOTIC SPACE

In this section, the following SU(2) Euclidean Lagran-
gian theory is studied:

L= =3Fp, Fayy + 3D, XD, X), ~ (X, = 1. 89
F,,, is the Yang-Mills curvature tensor for an isovec-

tor gauge field, and (D, x), is the gauge covariant deriv-
ative acting on a complex doublet of Higgs scalars.

In terms of real components, let x, =&, +i¢, and x, =
¢, +1id,. The topological invariant categorizing the ho-
motopy class of (¢,.0,,¢,,d,) can be written as an inte-
gral over the 3-sphere $3 at Euclidean infinity:

I = (1/12712)]'sg €O dd i ndPndd . (2)

The indices on &, of course, run from 1 to 4.

Now the finite action condition implies from Eq. (1)
that

dy, - 1wy(0,/2) ,X, ~ 0 asymptotically. (3)

Here the usual notation has been used for the Pauli ma-
trices, and w, is the Yang-Mills connection 1-form.

The substitution equation (3), together with the bound-
ary condition that ¢;¢;~ 1, implies that the invariant
integral can be rewritten as

I, =(1/167) [ , o' AuPAad, (4)
The final use of the finite action requirement is in

guaranteeing the asymptotic vanishing of the curvature,
so that

w0,/ %= gdg, (5)

where g is a matrix of the adjoint representation of
SU(2). This allows a transcription of Eq. (4) in terms
of the Haar group measure:

I,,:i(l,/247z'*’)jsidu(g). (6)
The uncertainty in sign reflects an arbitrariness in sign
in the original definition of I, given in Eq. (2). If the
plus sign is taken, one obtains

I, =1p, (7

where I, is the Pontryagin index of the gauge field con-
figuration. This is the resuit which was to be proved.
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i11. THE HOPF INVARIANT

Although it was an easy matter to write formula (2)
for the Kronecker index of a mapping from $*~$?, and
although one can do the same with equal facility for the
general case §"—S", it is not trivial to construct an in-
tegral expression for the Hopf invariant which labels
homotopy classes of mappings from $%—§°.

That this is so was pointed out by Patani, Schlindwein,
and Shafi.® The difficulty is that the obvious conserved
tensor density one would write for, say, the O(3) non-
linear o-model in three space dimensions, is the fol-
lowing:

8 T, (8)

BV _ gBVAC,
J =€ Eabcaxﬂa 4

The triplet of fields 7, are assumed to be nonsingular
and normalized to satisfy 7,7,=1. The regrettable fea-
ture of this density is that all charges defined as either
surface or volume integrals of it are identically zero.
Thus sadly it is homotopically insensitive. The resolu-
tion of this problem was found somewhat earlier by
Whitehead,® whose construction procedure will now be
outlined.

This procedure is not in fact applicable to all continu-
ous mappings from S*—-S2, but only those which are
twice differentiable. This smoothness condition, how-
ever, is certainly acceptable from a physical viewpoint.

The first step is to define a 2-form area element ¢ on
§% normalized according to f520= 1. Given a twice dif-
ferentiable map ¢: S°®—~S?, the next step is to use its
dual ¢* to define the 2-form ¢*c on S, o is, of course,
not exact on $? since S° has no boundary, but ¢*o is ex-
act on S since this space has a trivial second cohomolo-
gy group. It is thus possible to find a 1-form % on §°
which satisfies dZ =¢*0. Furthermore, this 1-form is
unique up to the differential of a function.

The Whitehead integral representation for the Hopf in-
variant of ¢ is then

Iy =] 5z, (9)

An application of Stokes’ theorem shows that it is well
defined. In a coordinate frame it is not difficult to show
that I, is invariant under deformations. The fact that
I, is integer-valued can be established first for fiber
mappings by integrating Z along a fiber and then using
Stokes’ theorem to equate the result with a surface in-
tegral which is essentially a winding number. For the
algebraic theorems required to complete the proof, and
indeed for the proof in full, the reader is advised to
consult the original reference.®

It is worth remarking that I, as given above is even
under a change in the orientation of S%, but odd under a
change in the orientation of $3. This is in accord with
general algebraic results.” The physical significance of
this can be seen in the context of discrete space—~time
symmetries.

IV. AN EXAMPLE WITH S? HIGGS ASYMPTOTIC SPACE

In this section, the integral expression just obtained
will be applied to a coordinate-free study of the Higgs
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topology in the Euclidean version of the Georgi-Glas-
how model:

L =-%F‘“V Fg,,,,“*"é‘(D,,, ¢));(DB qb)‘ - (¢>;¢>i - 17, (10)

F,,, is the Yang—Mills curvature for an isovector gauge
field, and (D, ¢); is the covariant derivative of an iso-
triplet of Higgs scalars. From Eq. (10), it is clear that
the following are three necessary asymptotic conditions
for the Euclidean action to be finite:

¢0;~1, (11a)
do;+€,;,0,w0;~0, (11b)
Q=dw,; +3€, ,w;Aw,~ 0. (11c)

The notation w, is used here for the Yang-Mills connec-
tion 1-form, and §; for the curvature 2-form. Equation
(11c) implies that

w,0,/2i~g"dg, (12)
where g is a matrix of the adjoint representation of
Su(2).

To construct the Whitehead integral, an area element
o on 8% must first be defined. This is done by imbedding
§% in R®={(x,,,%,) |x;= R for {=1,2,3}. 0 is then de-
fined by the Hodge star operation:

o=(1/4m)*(xdx,) =(1/87)e,, % ,dx ,ndx,. (13)
Then

¢*o=(1/87)€, 1,0, dd AdD,,. (14a)
Use of Eq. (11b) now leads to the expression:

*0=(1/8T)€,;,0;W;AW,. (14b)

By de Rham’s theorem, there exists a 1-form Z on §*
with the property that d% =¢*g. Noting Eq. (11c), one
obtains

Z=(1/4mMd,w;. (15)
The Hopf invariant is then given as:
1,,:[532/\@:(1/161;2)]53wlx\uﬁ/\wfa (16)

Just as in the earlier study of $*~S3, there is an un-
certainty of sign in the definition of I,,. Using Eq. (12),
one writes

Iy=+(1/24m) [, du(g). (17
Again, taking the plus sign, one arrives at the identity
Iy=Ip, (18)

where I, is the Pontryagin index.

V. CONCLUSION

It has been shown that, in two typical SU(2) theories,
a single index is able to describe both the gauge field
and the Higgs field topologies in Euclidean space~time,
The noteworthy fact is that the Higgs asymptotic spaces
have different dimensions in the two cases. Thus one
can speculate that the phenomenon discovered might
generalize considerably. In this respect, straightfor-
ward imbedding of SU(2) into higher-rank groups should
present no difficulty.
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The equivalence between the topological sectors as-
sociated with the vector and scalar fields highlights the
underlying geometrical structure of spontaneously brok-
en gauge theories. Physical applications of this result
to vacuum processes® are under investigation.
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APPENDIX

The notation of differential forms has allowed the
mathematical arguments in this paper to be presented in
an elegant and compact manner. For the benefit of those
readers who may be unfamiliar with the terminology,
the rudiments of the theory of the differentiation and in-
tegration of forms will be described.

Given a completely antisymmetric covariant tensor
Qul'"up of rank p, one defines the corresponding p-form
§2 according to

. dx“l/\dxuz/\"'/\dx“l’.
wytteiy

Q=(1/p1)R (A1)

The wedge product satisfies dx® Adx” = —dx”Adx* and
obeys the obvious rules of addition and scalar multipli-
cation.

From this p-form, one can define a (p +1)-form, de,
called the exterior derivative of £, which is written as
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98, ...
dQ = L — BT h Ak AN IA e o AdxPp,

p! ax, (A2)
The integral fsQ of Q over some p-dimensional sur-
face S parametrized by the p coordinates X, ... 2 is
defined by
fsg = LQI.__I,(P, co X)X s e a2, (A3)

For numerous physical applications of these formulas,
Ref. 9 is recommended.
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We discuss the topological properties of the Yang-Mills fields from a unified point of view of the
Wu-Yang global formulation. In four-dimensional Euclidean space, the gauge type is characterized by
the second Chern class. The multi-instanton solution recently found by ’t Hooft and generalized by
Jackiw, Nohl, and Rebbi is discussed from this point of view. We also discuss the generalization of the
topology of instantons and monopoles in higher dimensional spaces and the relation among them.

1. INTRODUCTION

Based on their consideration of nonintegrable phase
factors, Wu and Yang® proposed to generalize the no-
tion of gauge in such a way that it is independent of spe-
cific gauge field. A gauge is defined as follows: First
one chooses regions R ,R,,*** in space~time such that
the union of R,,R,, * ** covers the whole space~time,
and then specifies gauge transformations g;; for each
overlapping region R; N R,. The g;, is called the transi-
tion function. In each region R, the gauge field ALY is
defined such that A" and AY? are related by

AP () =g7500A (g 400)+ 875000 g, 1) (1.1)

forxeR;NR;. A global gauge transformation consists
of deformation of the regions R; and of usual local
gauge transformation for each 4{¥’. The collection of
gauges that can be globally transformed into each other
is said to belong to the same gauge {ype.

In the Abelian case, an advantage of this generaliza-
tion is that it enables us to accommodate the physics of
Dirac monopole without string singularities.? The
gauge types are characterized by the Dirac quantiza-
tion condition.

As emphasized by Wu and Yang,*? this generalization
corresponds, mathematically, to the description of the
Yang—Mills theory on the general notion of fibre bun-
dle,** The U(1) magnetic charges are proportional to
the first Chern class number of a complex line bundle.

The purpose of this paper is to extend Wu and Yang’s
bundle picture to non-Abelian Yang-Mills fields in
higher-dimensional Euclidean spaces. As we shall see,
the bundle picture is indeed suitable to analyze the
topological properties of the multi-instanton solution.
We then discuss the generalization of the topology of
instantons and monopoles to arbitrary dimensional
spaces and clarify their relationship,

In the next section, the gauge types of the (singulari-
ty free) Yang—Mills field in four-dimensional Eucli-
dean space is discussed. It is shown that the second

Iork supported by the National Science Foundation under
Grant No. PHY75-07376 A0l and in part by the Research
Foundation of the City University of New York under Grant
No. 11118.

On leave from Department of Physics, Hokkaido University,
Sapporao, Japan.
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Chern class® characterizes the gauge types. The mul-
ti-instanton solution is discussed in Sec. 3. In the final
section, we discuss the generalization of the topology
of instantons and monopoles to arbitrary dimensions.
In this paper, we only consider the gauge fields; in
bundle language, only principal fibre bundle. The
gauge group G is assumed to be semisimple.

2. THE GAUGE TYPES AND THE CHERN CLASS

We consider the Yang-Mills fields in compactified
four-dimensional Euclidean space E*, which is confor-
mally equivalent to the four-dimensional sphere $* em-
bedded in five-dimensional Euclidean space.

First consider a subspace X of E*+©=87,

Theorem 1: Let X be a subspace which has a count-
able covering and is contractible on itself to a point.
Then there exists a global gauge transformation such
that all the transition functions defined on the overlap-
ping regions in X become the identity transformation.

It is known® that any fibre bundle with a base space
which has a countable covering and is contractible on
itself is a trivial bundle. The trivial bundle (or product
bundle) is a bundle which has only one coordinate neigh-
borhood. Therefore, there must be a global gauge
transformation which satisfies the above property.

Thus, locally the gauge type is always trivial. The
compactified Euclidean space (S) is covered by two
hemispheres R, and R, of S!, whose overlapping region
is essentially $®= E®+ ., Since the hemisphere satisfies
the assumptions of Theorem 1, we have the following
result:

Theorem 2: In the compactified Euclidean space, a
gauge is characterized by choosing two regions R, and
R, whose union covers the whole space and specifying
the transition function g,, on the overlapping region R,
NR, (%= E%+ ),

A simple example of these theorems is the Mdbius
band which is a fibre bundle with the base S, the fibre
a line segment, and the group a cyclic group of order
two. If we only look at a portion of the Mdbius band, we
cannot discriminate the topological structure of the
Mobius band from that of the nontwisted band. The
“gauge type” of the Mébius band is characterized by
dividing the band into two open bands and specifying the
group elements for the overlapping region (i.e., the
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identity transformation to the one end of an open band
and the reflection transformation of the line segment
to the other end).

Next, we explain the following very important theo-
rem,” which is a basis of our work.

Theoyem 3. The gauge type in the compactified Eu-
clidean space S* is uniquely characterized by the homo-
topy class 7,(G) of the transition function g,, as a map-
ping from S* to the group manifold if G is arcwise con-
nected,

Suppose that two transition functions g!2’ and g%’ are
of the same gauge type. Then there exist transforma-
tions g, (x) and g,(x) which are well defined on R, and
R,, respectively, such that

g1 ) =251 gl (g, (0,
Since R, and R, are contractible on themselves to one
point and G is arcwise connected, g,(x) and g,(x) are
homotopically equivalent to the identity transformation.
Thus, ¢{4’(x) and g!5’(x) belong to the same homotopy
class. Conversely, if g2’ and g!%’ belong to the same
homotopy class, g2’ ‘gi‘;’ belongs to the trivial homo-
topy class. Then g{%"¢% can be extended to a trans-
formation well defined on R,. Denote the extended
transformation by g on R,. Consider the gauge speci-
fied by g jf‘;’. Perform the gauge transformation g(x) in
R,. Then after the transformation, the transition func-
tion becomes g%’ (x). Thus the gauge specified by g'g’
and g% are of the same gauge type.

XCRNR,.

If the group is not arcwise connected, the gauge type
is uniquely characterized by the equivalence classes of
7,(G) under the translation [~m(G)] of the fixed point.?
Again a simple example is provided by the Mdbius band,
where the “gauge group” is the cyclic group of order
two consisting of the identity transformation and the re-
flection of the line segment. The gauge type is charac-
terized by 7,(G)=Z,. Thus there are two gauge types.
The nontrivial one is the M8bius band, and the trivial
one is the ordinary nontwisted band.

As we shall discuss in the final section, from the
point of view of fibre bundle, the topological character-
ization of both monopoles and instantons can be based
on Theorem 3.

We now introduce the gauge covariant field &,
buv:auAu/_avAu*'[Au.'AvJ' (2-1)

Theorem 4: Under the same assumptions as Theorem
3, the gauge types are characterized by the second
Chern class® integrated over the whole space:

q=J ., (2.2)
where

¢,=(1/812) Tr(R A Q) (2.3)

Q=3F  dx, ndx,. (2.4)

To verify this, we need the well-known identity”

C.=

1
= 32ﬂ2€uwaBTr(F Fagddx = (1/81)8 4,
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T =€ as TT{A8 A+ 34,4,A)).
Then we have

e,

Sy €2 Jryca =

n

fzzlnazcz
1 ) ()
a7 Jst myom, @A =, 47 o

1 - - -
=- 247{2 fS3 €u.ua8 Tr(gléauglzgléaa glzgléaﬁglg)dou
(2.5)

= homotopy class number 7,(g,,) of the transition
function g, in the overlapping region R, NR,.

(2.6)

This proves Theorem 4 because of Theorem 3. If 7,(G)
=7, the second Chern class number uniquely charac-
terizes the gauge types. Compare this theorem with
Theorem 8 of Wu and Yang.!

Theorem 2 assures us that we can always arrange the
gauge field on compactified Euclidean space to be sin-
gularity free by choosing, at most, two regions. How-
ever, for the gauge fields with a large Chern class
number, it is practically convenient to provide regions
more than two. (For an explicit example, see the next
section.) Then the gauge type is characterized by the
sum of the (suitably oriented) homotopy class numbers
for each transition function.

g= 2s (homotopy class number
®i0%; of the transition functions g, ;) (2.7

3. TOPOLOGY OF THE MULTI-INSTANTON SOLUTION

First we summarize the solution of the Euclidean’
SU(2) Yang-Mills field found by ’t Hooft® and general-
ized by Jackiw, Nohl, and Rebbi’:

A, =210,4,°% (3.1a)

A= nwavlnp, (3.1b)

p= Z T )2, (3.1c)
where

Taur™ €aauv = 2 €ape€oouve (3.2)
(3.2) satisfies

(8, w)w™ = 310,7,,,2%, /%2, (3.3a)

w=(x,+ix,° 0,)/VxC. (3.3b)

Our convention is €,,,,=1. (3.1c) is a general solution

of the equation
({Lp)/p=0, (3.4)

which is equivalent to the self-duality condition’ on F,
under the ansatz (3.1b).

By using (3.3), (3.1) can be rewritten as

li o )2(3 w,)wi (3.5a)

where

w;= [(x—xi)4+'i(x —x,)aO,,J/‘[(x —xi)z]”z« (3.5b)
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The gauge covariant tensor F,, is given by

T R
=1 p<Z: (x "xi)4

1 AN —x ;0% ~x;)
i: it d x)qj>nawoa. (3.6)

(x —vf)“

It is easy to see that F',, is nof singular at x=x;, al-
though the gauge field (3.5) is singular at x =x;. This is
because the singularities contained in (3.5) are only
pure gauge. Therefore, each singularity can be elimi-
nated by an appropriate gauge transformation. For the
study of global property of this solution, the formula-
tion of the last section provides an ideal framework,

Divide space into n regions R,,...,R, such that each
region R; contains only one singular point x; and the
overlapping regions meet only at infinity. We arrange
the ordering of the regions so that the only adjacent re-
gions R; and R,,, overlap. In each region R, we define
the gauge field

0o 1 - A2
Al Z<(x_¥)2w18 W= o

] -1 -1 .
P i xl)z wt (auwl)wl wl))
(3.7)
which has no singularity in R; although w, is singular

at x=x,. For each overlapping region R; NR,,,(=5% we
specify the transition function

Bi i = @ in ;. (3.8)
Then we have

(i) _ =1 (i+1) - .
A =g A g i Y 8T 20 8, 10 (3.9)

We see that g; ;,, ~ 1 and A ~0(1/|x|?) as |x|~ .
This property conforms our §* picture. The field A"
give the field strength which is equivalent to (3.6) be-
cause it is related to the original singular form (3.5) by

a singular gauge transformation
(€8 JNR -
AP =wATI Ry o+ wie v, (3.10)

The global gauge type of this solution is characterized
by the second Chern class number. By (2.7), we have

=
q =Z{/ (homotopy class number of g; ;,,)
i=1

=p-1 (3.11)

since the homotopy class number (or winding number)
of g;,;4,, a5 we shall see below, is one for each ¢.
Choose a coordinate system such that the singular
points x; and x,,, lie on the x,(=¢) axis with ¢,>> 0 and
t;,,<0. For simplicity, first suppose that the overlap-
ping region R; NR,,, is a thin hyperplane (or rather
hypersphere S3% because of compactification) between
s, and ¢;, Then we have
gi,iol = {[,’,2+ (t - ti+1)2][72+ (t - ti)zJ}-l
X[t =10 1)+ 72 —ix > 0t — 1]
(r?=xi+x3+x3). (3.12)
For any hyperplane between £;,, and #;, we have
Zi g1 asy -

and
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s~ -1 asr-0,

Thus, every point on the SU(2) group manifold is cov-
ered by £, ;41(x) Once and only once when x sweeps the
hyperplane. The homotopy class number is one. Since
any continuous deformation of the overlapping region
induces a continuous change in g,,,,; as long as it does
not cross the singularities of w; and w,,,; the homotopy
class number for any overlapping region defined above
is 1.

The result g=n ~ 1 was obtained by Jackiw, Nohl, and
Rebbi by direct calculation of (2.2). Our derivation
clarifies the intrinsic topological property of the solu-
tion.

From this point of view, the occurrence of tunneling*®
from one classical vacuum to a gauge rotated one cor-
responds to the occurrence of homotopically nontrivial
transition functions in some region of space-time. If
we adopt this picture for tunneling, it is quite easy to
modify the field configuration (3.5) which represents n
instantons (or » anti-instantons) to a possible configu-
ration with any mixture of instantons and anti-instan-
tons by taking the inverse of the transition functions
corresponding to “antitunneling.” Of course, after
doing this, the field configuration is not the solution of
the field equations, while the action remains finite, We
only give the simplest example of an instanton-anti-
instanton configuration,

1 AZ
A, =~ (——j (3, ,w,

x2
2 -1
—= ___ (8
% ,(__xz)z( RO 7

Yot + g

XZ
+ (?j; )2(8 0)32)0)3&>, (3.13)
where w,,=w,w; 'w,. (3.13) corresponds to two-transi-
tion functions g, and g3;. 1t is of some interest to study
the interaction between instanton and anti-instanton,
which, however, is not the subject of this paper.

Our picture that the vacuum tunneling corresponds to
the homotopically nontrivial transition functions is
equivalent to the description!® given by Jackiw and Reb-
bi and by Callan, Dashen, and Gross, if the overlapping
regions are moved to infinity (or, in the $* picture, to
the “north pole”). The original BPST” solution takes
this form. In general Theorem 1 ensures that is always
possible. Practically, however, performing such
transformations is not simple for the multi-instanton
solution and may not be necessary.

4. INSTANTONS AND MONOPOLES IN ¢-DIMENSIONAL
SPACE

The discussions of Sec. 2 can be extended to arbitrary
dimensional space, Suppose that the d-dimensional
Euclidean space is conformally mapped onto S?. Then,
Theorem 3 generalized to d dimensions shows that the
gauge types of the singularity free gauge fields are
characterized by the homotopy class, 7,_,(G), of the
transition functions defined on the overlapping region
§9t, U the dimension is even, the homotopy class can
be described by the (d/2)th Chern class® defined by

[(~ 1)‘”2/(2111)"/2(d/2)1]2_1 fd/z Q AREER Qe (4.1)

Jar2’
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where the summation is taken over all ordered subsets
(84, +++,545) Of d/2 elements from (1,...,7) and all
permutations (j;,...,jsz) of (i,...,4,), the symbol

8 denotes the sign of the permutation, » is the dimen-
sion of the matrix of the gauge group. @ is the curva-
ture form in matrix representation defined by (2.4).
For a semisimple group, the proof is a straightforward
extension of that for Theorem 4. If the dimension is
odd, we have no characterization of the homotopy class
nd_l(G) in terms of the cuvvalture form. This is because
any characteristic class expressible in terms of F,
must be an even form.

Next, consider a (d - 1)-dimension sphere in d-di-
mensional Euclidean space and consider the restriction
of the Yang-Mills field on this subspace. Thus, we are
considering a relative bundle® of the original bundle.
By applying Theorem 3 to this subspace, we conclude
that the gauge of the relative bundle is determined by
choosing two hemispheres covering S and by speci-
fying the transition function for the overlapping region
(=5%"%). Hence, the gauge type of the relative bundle is
characterized by 7,.,(G). If the dimension d is even,
there is no characterization of 7,_,(G) in terms of the
curvature form because d — 1 is odd. If the dimension
is odd, on the other hand, it is characterized by the
[(d - 1)/2]th Chern class which is defined by (4.1) with
d/2 being replaced by (d ~1)/2. It is a generalization
of magnetic flux in three dimensions, which is the first
Chern class for the U(1) bundle, to higher dimensions.
It is easy to see that the integral of the [(d -1)/2]th
Chern class over the sphere S does not depend on the
choice of the sphere as long as it does not cross a sin-
gularity, Thus, if the dimension is odd, the [(d - 1)
/2]th Chern class can be used as a characterization of
the gauge type. If the gauge field has nontrivial (d - 1)
/2-th Chern class, its behavior at infinity is not pure
gauge.'* Hence, we cannot compactify the space and the
topology of the base space is different from s,

We define an instanton as a classical field configura-
tion whose nontrivial topological characterization is
7,,(G) in d-dimensional Euclidean space. We define a
monopole!? as a (possibly singular) classical field con-
figuration whose nontrivial topological characterization
is 7,,(G) in d-dimensional Euclidean space.

Thus, in our definition the appropriate pseudoparticle
is the instanton if the space-time dimension is even
and is the monopole if it is odd, as long as we require
that the pseudoparticle be characterized by some topo-
logical charge in terms of F,,.

The magnetic monopole in three dimensions is char-
acterized by 7,(G)'* which, in Wu and Yang’s termin-
ology, is the class circuit,! It is well known that
7(SUn))=0 and 7,(SO®))=Z, (n=3). Therefore, there
is no monopole in the SU(n) Yang~Mills theory in three
dimensions according to our definition. In fact, the
first Chern class identically vanishes for SU(n). For
SO(n), in general, there is no characterization of
7,(SO(n)) in terms of the curvature tensor, while there
are only two types of class circuits which cannot be
globally transformed into each other. For SO(3), this
was explicitly demonstrated by Wu and Yang.! If we
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consider the generalization of magnetic monopole to
five-dimensional space, 7,(G), and hence the second
Chern class is the topological characterization of the
monopole. It is known® that 7 (SUm))=7LSp(n))=Z for
nz2 and 7{SOn))=Z for n=<5. [We note that for SO(»)
the first Pontjagin class® is the appropriate characteriza-
tion of the monopole in terms of the curvature tensor
in five dimensions.] Then, the five-dimensional mono-
pole may have infinite number of gauge types. This is
also true for the four-dimensional instanton.

After the completion of this work, the author came to
know, at the “Five Decades in Weak Interaction” Sym-
posium (City College, Jan.21-22, 1977), that Profes-
sor C. N, Yang generalized the monopole to five-dimen-
sional space and obtained spherically symmetric clas-
sical solutions.
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The concept of symmetry of the solutions of a system of differential equations is clarified. The functional
character of the symmetry transformations is stressed in contrast with the pointlike character of the
ordinary transformations considered by Lie. It is shown that any differential equation of arbitrary order
possesses infinitely many symmetries, in strong contrast with a general theorem denying the existence of
pointlike transformations of symmetry for an arbitrary differential equation of order greater than one. The
relevance of local differential symmetries in theoretical mechanics is discussed, and some unsolved

questions are raised.

I. INTRODUCTION

In a recent paper' Anderson et al. briefly discussed
the great usefulness of introducing general transforma-
tions of the kind:

Fh=fir,u, 00, 8,8,u," + * ),
wW=gI,u,0u,9,0,0,0 ¢ ¢, (1)
i, Lp=1,...,m, j=1,...,n,

in the framework of the partial differential equations
Px,u, 80,88, «+)=0, k=1,...,n, (2)

X, ...,%, being the independent variables and u,,...,u
being the unknown functions.

n

The transformations (1) are important in the context
of nonlinear wave phenomena, solitons, ete.?

We give additional information concerning the rele-
vance of the transformations (1) for the particular case
of the theory of ordinary differential systems (Sec. IV)
and classical mechanical systems (Sec. V). We shall
see that transformations similar to (1) arise in a natu-
ral way when studying the symmetries of a system of
ordinary differential equations (Secs. II and III). These
symmetries were first considered by Lie® in a more
restricted framework than the one presented here.

Il. THE SYMMETRIES OF A SYSTEM OF
DIFFERENTIAL EQUATIONS

Assume that we are given a certain system of ordi-
nary differential equations,

Dyxy vy, 98 ...,y =0, i=1,...,n,(3)

x being the independent variable, y,,...,y, the un-
known functions, and y{1,. .. ,y,‘fﬂ the derivatives of
maximum order appearing in (3).

We shall call symmetry of (3) any prescription or
rule s permitting us to transform any generic solution
v, (x),...,v,{x) of Eq. (3) into another solution soy;(x),
i=1,...,n, of Eq. (3). That is, s is an operator whose
domain of definition is the set S consisting of the for-
mal solutions of (3).
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By defining the composition of symmetries s, and s,
in the standard way, it is obvious that the set § of all
the symmetries of (3) is an abstract monoid (semi-
group with identity).*

The symmetries considered by Lie in relation to the
differential equations were of a very restricted kind.
In fact, for the case of a single differential equation,

,97=0, (4)

he only considered the possibility of transforming the
solution of (4) by infinitesimal transformations of the
kind

D(x,y,y’,...

T=x+€nx,y), F=v+€blx,y), (5)

together with the obvious transformations induced by
(5) on the successive derivatives 3’,%",+ * . In short,
Lie only considered the symmetries of (4) induced by
infinitesimal point transformations between the x and y
variables.

On the other hand, the symmetries that we are speak-
ing about have nothing to do, in general, with pointlike
transformations, since they have as domain the func-
tional space of the solutions of (4).

Before proceeding, it is useful to give examples of
differential equations admitting symmetry transforma-
tions that cannot be reduced to the infinitesimal form

(5): The linear differential equation
y'=F(x)'y, (6)

F(x) being a periodic function of period T, obviously
admits the global symmetry

spoyla)=ylx+T),
which, of course, has no infinitesimal counterpart.

A much more significant example is furnished by the
transformation

sgo3(x) = y'(),

which is, of course, a symmetry possessed by the so-
lutions of any linear and homogeneous differential equa-
tion with constant coefficients a,,

N
"Z_\l/any("=0. (7
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One can, of course, be led (for a concrete differen-
tial equation) to a very complicated prescription giving
the analytical description of a symmetry. For in-
stance, a recipe such as

sxey) = [TKG, 1), v/ =), 9" GPNdx,  (8)

could arise as a possible symmetry of the solutions of
a particular Eq. (4). In order to avoid the difficulties of
treatment of the global symmetries like (8) we shall
confine our attention to the study of a particular sub-
class S, of symmetries: the local differential symme-
tries,

1t. THE LOCAL DIFFERENTIAL SYMMETRIES

In the following we shall consider that (3) can be
written in the canonical form,

PAEE O A S S R S Ak I 9

i=1,...,n.
A symmetry of (9) will be called local differential if
the prescriptions used in order to transform any solu-
tion of {(9) have the form

(s~

;yn;""yn"l)! (10)

. ,_v,(fn'l) .

Fi=Files v, . 97

¥ = . (s=1. .
A‘fo(xyyly" . ,ylsl PRI FTRIE

That is, given any solution ¢ (x},..., ¢ x) of {9) we
have to substitute, in (10), v, 91,..., v by @ (x},

n

@lx),. .., 087 x); in that way we get
;=" x), T="Flx). (11)
The transformed solution ¥,(¥),..., ¥, () is now ob-

tained by elimination of the x variable between Egs.
(11).

At this point the reason why we have not introduced
higher derivatives of y,,...,y, into (10) should be
clear: Had we done this, the differential equation (9)
would reduce this apparently more general prescription
to the prescription given by Eqgs. (10), just by substitut-
ing -yi(ti {for any ¢, = s;) by its value obtained from (9).

In order to get the transformation formulas for the
derivatives d%,/d%,..., d3,/d%,..., d"y,/d%", one
simply has to differentiate Eqgs. (10}, taking into ac-
count the dynamical equations (9) every time that in the
process of differentiation a derivative vt (¢, 2 s,) ap-
pears,

1V. MATHEMATICAL CONSEQUENCES OF THE
LOCAL DIFFERENTIAL SYMMETRIES

1t is well known® that every first order differential
equation

y'=F(x,y) (12)

admits infinitely many monoparameiric groups of
transformations having the infinitesimal representation

F=x+€nx,y), F=y+€0(x,y), (13)

so that by means of (13) any solution of (12) is trans-
formed into another solution of (12).

We point out that the monoparametric group structure
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of (13) is not necessary. In fact, a monoparametric
monoid structure is sufficient.” The reason for always
speaking, in this context, of monoparametric groups
of transformations is that it can be shown’ that any
monoparametric monoid of pointlike transformations
such as (13) contains, automatically, the inverse of
every transformation contained in (13}.

In contrast with the above result concerning the first
order differential equations, a differential equation of
order n>1 only exceptionally admits continuous groups
of transformations. In particular, if a second order
differential equation admits continuous groups of sym-
metries like (13), these monoparametric groups generate
a continuous Lie group having no more than eight pa-
rameters.® This is what happens to the differential
equation:

y"=0,

admitting the projective group of the (x,4) plane as a
group of symmetries which possesses just eight essen-
tial parameters.

A second order differential equation not admitting an
infinitesimal transformation like (13) is

LEY S VN (14)

Indeed, we get from (13), to the first order in ¢,

3-;//:__ (15)

=y +€[8, , + (20, ~n, )y +(0,,, - 21, )y

-1, w'y,S - 3T),y' y'ey” +(9’y - 27, x)'y"]
=y" +€Blx,y,v,9"),

8,49, ,:9, 5 -+ * being the partial derivatives 36/8x,

860/8y,8%0/ax" - +
If (13) is a symmetry, we must have
T =XV, (16)
To the first order in €, Eq. (16) gives
B=2x1+2v6 . (17

By substituting (15) into (17), taking {(14) into account,
and equating the different powers of v’ to zero, we im-
mediately get:

M 4y=0,
Brow=205=0, (18)
20, 0~ 1, 4e - 3x?+9%m, =0,

8 +{9,y_2'n,x)’(x2+yz)—29(7}—29,)'9:0.

rxx
It is now very easy to show” that Egs. (18) only possess
the unique trivial solutions:

blx, y)=nlx, ) =0.

Note that (13) is nothing more than the infinitesimal
form of a monoparametric monoid of transformations of
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the type in (10) for the particular case of #=1 and s,=1.
Similarly, the differential equation in (14) is a particu-
lar case of (9), obtained with »=1 and s,=2. For this
particular case, the infinitesimal form of a monopa-
rametric monoid of transformations of symmetry is
suggested by Eq. (10) with n=1 and s,=2, that is

x=x+enlx,y,y"), y=y+edlx,y,9". (19)
From (14) and (19) we easily get

a3y _ ., (d@ d_n) ,

ﬁ—q\’ + € E;—y dx =y +€a(x,ysy)’

ey dy’ _ , (da ,,d"?) (20)

a@ar Y T \&x Y @&

=y" +€Blx,,¥),

where

16

ZE= O RE A CAR N I S

d

En=nyx+n,y.y’+(x2+y2)'n,y"

da d . (21)

e orrt,y v tetesie,,

d d
—(x2+y2)’£— =V Tt Ty

+1, (2% +9%) >

To the first order in € Eq. {16) reduces to
B(x’yryl):zx'n(x’y7y,)+2y'e(x’y’y,)’ (22)
B(x,v,y’) being defined by Eqgs. (20} and (21).

In contrast with (17), Eq. (22) is now a single partial
differential equation of the second order relating the
two functions n(x,y, v’} and 8(x,y,y’). It is obvious that
a similar partial differential equation for n and 6 can be
obtained for any differential equation of second order,

.V”:F(x7y)y,)' (23)

Since a second order partial differential equation like
(22) has infinitely many solutions, we get, for arbitrary
second order differential equations like (23), a result
similar to Lie’s’'® concerning the first order differen-
tial equations: The existence of infinitely many mono-
parametric monoids of local differential symmetries
for any second order differential equation. The only
difference, in relation with Lie’s results, is that the
infinitesimal transformations admitted here are of the
type in (19) instead of the particular type in (13).

The above conclusion for an arbitrary second order
differential equation can be obviously extended to sys-
tem (9) by substituting (10) by the infinitesimal counter-
part,

Fo= Vit €0, 9,90 e 9 (24)
F=x+€0(x,y, ..., 907 e,y

From all this follows a similar behavior for any kind of
differential equation or system of differential equations
(with independence of its orders) in relation to the num-
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ber of symmetries admitted by the set S of its solu-
tions. In fact, as we have briefly explained, any sys-
tem (9) admits infinitely many monoparametric monoids
of transformations (24) acting on S. The differential
systems with s,=+ -+ =s,=1 are not, therefore, privi-
leged in relation to the number of symmetries admitted
by S . The only privilege is that (24) reduces to a
monoparametric group of pointlike transformations
when s;=1.

V. THE LOCAL DIFFERENTIAL SYMMETRIES IN
THEORETICAL MECHANICS

It is known that the differential equations of many
problems of classical mechanics can be cast in the
form
d < 8L> oL

L === (25)
dt\sgq,/ oq;’

n being the number of degrees of freedom and
L{g,;,4,,t) being the Lagrangian.

Writing (25) explicitly, we have

noo9?L . ®L , 9L 3L
e T tae T
ycy 9¢;9q; 4 aqiaqj 4 8g;8t dq, !

13

and assuming that in a certain region

cet{ (a0
€ q 5
8¢ ,9q;/ !

we can write Egs. (26) in the canonical form
aizFi(ql"" ,L]'n,t). (27)

Therefore, as we have explained in Sec. IV, the local
differential symmetries associated with (27) will adopt
the global form

/ST R

6i=fi(t[19' b 7qn;q.1;' .. 9dn;f) s
- . . (28)
t=f0(q”' ey ny iy .- ,q,,',f) y

or the infinitesimal form
7i=q:i+<10qy, - o i drse e dm By
_ . . (29)
t:[+€8(q1" L 5qn;q1:' L ’qn;t)!

which are usually referred to (by the physicists) as dy-
namical symmetries.

Two important kinds of transformations like (29)
seem to have been used in the context of the Lagrange
formulation of classical mechanics. Indeed, it is known
that for the isotropic harmonic gscillator and for the
Kepler problem, the additional first integrals

M,, :éké£+qkql

Ry151,2,3
and (30)
fl/\(q/\é)—q/‘?y q=(4n‘12343)

are related!® with the gauge symmetries of L under the
transformations

Gy=q;+(€/2)(,5,, +4,0,), T=t (31a)
and

q:=q:+ (410, ~ 2914, - 29°85,,) , T=t, (31b)
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which give, for the corresponding Lagrangians

L=G/2-q?/2, L'=g/2+1/q, (32)
the variations
. r_.d g_&>
OL=—€ T {q:9,), OL *edt<q . (33)

What is still more important, it can be shown'! that if
Flt,q,. .- ,dp iy, ...,7q, is a first integral of (25), then
the family of transformations

(—Ii:ql+€ni(qls"'aqn;dla""q.n;t)’ ?=t (34)

is a gauge symmetry of the corresponding L, where the
functions 7, are given by the linear system

n 92,

— .= -8F/%q,. (35)
o1 aqia‘Ij ¢ ql

1

This is, indeed, a very nice result connecting the first
integrals of systems of differential equations like (25)
(with |8L/8¢,84,| #0) with the infinitesimal gauge sym-
metries of L. This result shows, as well, that the
symmetries of the formal type (29) are very useful to
physicists. Nevertheless two warnings should be taken
into account:

1. A gauge symmetry of L, like the one given by (29),
is not in general a dynamical symmetry of the differen-
tial equations (25). In the particular case of systems
like (25) it is known that every pointlike transforma-
tion,

7;=8:(Q, 0, t=t, (36)
acting on the points of the configuration space, converts
the differential equations (25) into another differential
system equivalent to the Lagrangian system associated
to L.

If, in addition, transformation (36) is such that

(@4, @i D= L@y, Q1 1)+ MG, 0, (37)

then it is obvious that (36} is nof only a gauge symmetry
of any L, but it is, as well, a dynamical symmetry of
the solutions of (25). Indeed, in the new coordinates

Q,,- - ., @, the new equations of motion are equivalent to
d(eL'\ 8L’
|y =0 38
S Q) 0. (38)

and by (37) the Egs. (38) take the form

d (az,> oL _,
dt aQi - 8Q, T
as we desired to prove.

This particular coincidence of a gauge symmetry and
a dynamical symmetry should not induce us to think in
the existence of a general relation connecting these two
completely different kinds of symmetry; the dynamical
symmetries are not pointlike transformations [although
in particular cases, such as {36) when Eq. (37) is ful-
filled, they can be induced by pointlike transforma-
tions], but functional transformations acting on the set
S of all the solutions of a given system of differential
equations. They, therefore, have nothing to do at all
with the gauge symmetries of a certain function L (in
general not observable, neither in classical nor in
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quantum mechanics) existing only for a very restricted
class of differential equations. These essential differ-
ences, frequently not clearly stated, do justify why the
relationships (if any) connecting the monoparametric
monoids of local differential symmetries and the first
integrals of a general system of differential equations
are still unknown.

2. We should not be induced to confuse the transfor-
mations (29), together with the transformations,

4y T=1,000,m, (39)

q'izq'i+€ai(q1y-~' 7qn;q.1""

induced by (29) on dg,/d1,...,dq,/dt, with pointlike
transformations on the “/-phase space” of coordinates
(Giy -« sGmyGuy-- -G 1). The canonical and canonoid
transformations'” are, as well, pointlike transforma-
tions acting on the standard phase space of classical
mechanics and should, accordingly, be clearly dis-
tinguished from the prescriptions (29) and (39), having
no meaning at all when acting on a single point

(@1r- v+ »GuyGus-- - »4p D). This essential difference, as
we have explained, does not preclude the possibility
that a particular symmetry of Eq. (27) could be induced
by a canonoid transformation,

Qi=fi(qi,/),~,f), Pi:f(sri((Ii)/)iaf)’ (40)

in the case that the new Hamiltonian K, obtained from
{40), is equal [up to a function f(#)] to the old Hamil-
tonian H{q, p, ) when written in the form H(Q, P, {); that
is,

K@,P,N=H(Q,P, 1 +f{1). (41)

In this case it is obvious that the canonoid transfor-
mation (40) changes any solution ¢(/), p(#) of

. ?H . oH
) P 42
U=55 PiT g (42)
into a new solution Q(f), P(/) of the same Eqgs. (42),
since we have
R K . K
Q,—«gpﬁ&- Pi——gQ—i (43)
and because of (41), Egs. (43) take the form
. oH . 9H
) —— b 4
Gi=gp0 Pi=-5g. (44)

At this point it is very easy to understand why the
connection between monoparametric groups of dynam-
ical symmetries and first integrals of general systems
of differential equations is, geometrically at least, far
from being clear. Indeed, the /-phase space associated
with a general (not necessarily Lagrangian) system of
differential equations like (27) has topological dimen-
sion 2n+1. The first integrals of (27) are manifolds of
dimension 2xn. On the other hand, given a solution ¢,(?)
of (27) and a monoparametric group of dynamical sym-
metries of {27), the action of this group on appropriate solu-
tion ¢,(/) generates a partition of the {-phase space into
two-dimensional manifolds, that can be labeled by the
local parameters / and the parameter € labeling the
elements of the monoparametric group of symmetries.
Therefore, unless n=1, the partitions of the {-phase
space (G .- -4 qys- - - dn 1), defined by giving a first
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integral of a general system of differential equations
and by giving a monoparametric group of dynamical
symmetries admitted by the system, have nothing fo do
with each other. The reciprocity existing, at least for
the Lagrangian systems, between first integrals and
dynamical symmetries,'! appears, therefore, as a very
striking fact which should be studied more in order to
further clarify this striking connection.

In the case n=1 (mechanical system with one degree
of freedom) the dimension of the partitions defined by a
first integral and by a monoparametric group of sym-
metries of the differential equation,

‘.1'1=F(q1’q.ut); (45)

coincide. Itisvery interesting to remark that this seems to
be notapurely fortuitous fact, of purely geometrical na-
ture, having no other dynamical consequences. In fact,
Havas'® has shown that any differential equation like

(45) is equivalent (has the same solutions) to other dif-
ferential equations that can be obtained from a Lagran-
gian.

VI. CONCLUSIONS AND FINAL REMARKS

The natural way in which the local differential sym-
metries arise, in the framework of the differential sys-
tems, has been stressed. We have pointed out the con-
ceptual differences between a dynamical symmetry and
an ordinary pointlike transformation in configuration or
phase space. We have given examples (Sec. II) showing
that the richness of the dynamical symmetries is by no
means exhausted by the local differential symmetries.
The unifying role played by the local differential sym-
metries, as providing us with infinitely many transfor-
mations for any differential equation of arbitrary order
(and not just for the first order differential equations,
like in Lie’s approach) has been emphasized. The rel-
evance of the local differential symmetries in the
framework of the Lagrangian systems of differential
equations has been discussed. We have seen that there
are still some questions to be answered: the connec-
tion, for general systems of differential equations, be-
tween monoparametric families of dynamical symmetries
and the existence, or not, of an associated first inte-
gral. This connection should be clarified, not only in
the context of the local differential symmetries, but
for more general monoparametric monoids of general
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dynamical symmetries, nof implementable by trans-
formations such as (29). In this general case, one ob-
viously needs a previous generalization of the concept
of first integral, as a functional F such that for any so-
lution ¢,(d),. .. ,q,(¢) of (27) and for any time #, the
number obtained by the prescription F defining the
functional,

Flg,(D),...,q,{8);0),

is a constant. That is,

ditF(ql(t),... L, (0;D=0.
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It is shown that the boost matrix elements of SO(3,1) obtained by Smorodinskii and Shepelev can be
written as a sum of two Fourier series, whose coefficients are Clebsch-Gordan coefficients of SO(3) with
complex angular momenta and magnetic quantum numbers. Moreover, the second term is equal to zero for

all representations of the principal series except the most degenerate case. The connection between our
expression and the spherical functions of Dolginov and other authors is explained. It is also noted that
there are two ways of writing the boost matrix elements of SO(3,1), differing from each other by a phase
factor. A proof for the orthogonality relation of the representation functions of SO(3,1) is given in the
Appendix. The Clebsch-Gordan coefficients of SO{3,1) for the principal series in the general case

(o v X(oyv,)—(0;v;) are obtained as X functions with complex angular momenta. An integral representation
for these X functions is obtained. It is shown that the CG coefficients of SO(3,1) have a multiplicity-two

problem. A solution to the multiplicity-two problem is presented.

1. INTRODUCTION

The subject of the representation function, or more
simply the boost matrix elements, and the Clebsch—
Gordan coefficients (CGC) of SO(3, 1) has been treated by
many authors. We offer here a list, which is by no
means exhaustive, of previous work done on these two
subjects. For the boost matrix elements of SO(3, 1),
work has been done by Strdm,*”® Duc and Hieu,*'® Verdiev
and Dadashev,® Sciarrino and Toller,” Anderson, Raczka,
Rashid, and Winternitz,? Makarov and Shepelev,® Smoro-
dinskii and Shepelev,*® and Smorodinskii and Huszar.™
For the Clebsch~Gordan coefficients, work has been
done by Naimark,'2"* Dolginov and Toptygin,'® Dolginov
and Moskalev,'® Anderson ef al.,*' Klink,'® Gavrilik, "
Bisiacchi and Fronsdal,®® Bamberg,*! Verdiev,* and
Verdiev, Kerimov, and Smorodinskii.*®

In the case of the boost matrix elements of SO(3, 1)
there are basically two ways to calculate the d matrix.
These two ways are what Strom calls the infinitesimal
method and the global method. The first one is to ex-
press the infinitesimal generators as differential opera-
tors and then solve a partial differential equation for a
particular representation. Then one can use lowering
or raising operators,?® or solve recurrence relations,
to obtain the general representation matrix. The second
method is to write the d matrix as an integral repre-
sentation and perform the integration. The final results
so far obtained are all expressible as a summation over
two variables. With the exception of Smorodinskii and
Shepelev,'® there are two points about these expressions
which we think can be improved upon. The first point is
that these expressions are unrelated to the d matrix of
SO(4), which, as Freedman and Wang®® have shown, is
expressible as Fourier series with SU(2) CG coeffi-
cients. The boost matrix elements of SO(3, 1) should be
connected to those of SO(4) by analytic continuation, but
this point had not been made clear until Smorodinskii
and Shepelev’s work. The second point is that the vari-
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ous expressions lack an underlying structure. Thus
they cannot be easily transformed from one to the other.
They are unrelated to angular momentum theory, which
is well understood, and as a result it is very difficult to
extract symmetry properties from these expressions
unless one applies complicated mathematical theories
about hypergeometric functions. With regard to the firsi
point, we think that Smorodinskii and Shepelev have
made progress in showing that the boost matrix ele-
ments of SO(3, 1) can be analytically continued to the
SO(4) d matrix of Freedman and Wang. However, it is
our purpose to show that the expression obtained by
Smorodinskii and Shepelev can be further improved
upon, thus making closer contact between the boost ma-
trix elements of SO(3, 1) and angular momentun: theory
with complex j and m. With regard to the second point,
we show that the boost matrix elements can be written
in terms of CGC of SU(2) with complex j and m, which
is a direct analytic continuation of the CGC obtained by
Racah.?® Thus the symmetry properties of the boost
matrix elements can be easily derived from the known
symmetry properties of the CGC of SU(2).

In summary we offer the following three points as ad-
vantages possessed by our expression. 1. The boost
matrix elements of SO(3, 1) are expressed as a Fourier
series whose coefficients are CGC of SU(2) with complex
j and . This shows immediately that it is an analytic
continuation from SO{4). It reduces the summation vari-
able to one, simplifies the expression, and gives a
meaning to the summation index, i.e., as the summation
index for a Fourier series. 2. Its symmetry properties
can be easily read off from the well-known symmetry
properties of the CGC of SU(2), or the analytic continua-
tion thereof. 3. We can use the expression of the d ma-
trix of SO(3, 1) to prove thal the CGC of SO(3, 1) are an-
alytic continuations of N functions. This will be demon-
strated in Sec. 4. We are thus able to show that there is
a multiplicity-two problem connected with the CGC of
S0O(3,1), which, as far as we know, has not been men-
tioned by previous authors. A solution to the multiplic-
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ity-two problem is presented in Sec. 5.

For the CGC of SO(3, 1), the basic work was done by
Naimark.?"!'* However, his expression is in terms of
the basis functions of SL(2C), F,,;,®) or fo,1m(2), and
not in terms of angles, and therefore it is not clear how
the CGC of SO(3, 1) are connected with X functions with
complex angular momenta. Dolginov and Toptygin'® and
Dolginov and Moskalev'® succeeded in re-expressing
Naimark’s result in terms of the spherical functions of
SO(3, 1) and thus obtained the CGC of SO(3, 1) for the
tensor product (0,0)X (0,0)~ (0,0), in terms of X func-
tions with complex angular momenta. Other authors,
such as Bisiacchi and Fronsdal,?® Bamberg,? and
Domokos,?” have treated the same particular case, for
v,=v,=vs=0. Anderson, Raczka, Rashid, and Winter-
nitz have obtained general expression for the CGC of
SO(3,1). Their formula is quite complicated, the most
general one containing a summation over 11 variables.
Moreover, the expressions they obtain are products of
two CGC and are therefore doubly lengthy. Gavrilik'®
used the same technique to obtain CGC for the principal
and supplementary series. Verdiev, Kerimov, and
Smorodinskii®® obtained general expressions for a single
CGC. However, their expression is in terms of “spinor
basis” with labels prr#. In order to transform the spin-
or basis to the canonical basis pPAJM, one has to multi-
ply the results further by CGC of SO(3) with complex j
and m. We have obtained an integral representation for
the CGC of SO(3, 1), using techniques similar to those of
Dolginov and Moskalev'® and Verdiev et al.,” but direct-
ly in terms of the canonical basis, i.e., in the decompo-
sition SO(3, 1) D SO(3) > SO(2). Moreover, we have sim-
plified the original expressions of Naimark which were
used by Verdiev et al.?® by omitting a phase factor,
thereby reducing the CGC expression to a simpler form.
Also Verdiev et al. did not succeed in obtaining the CGC
as a product of CGC of SU(2}, while we have succeeded
in doing so.

The previous authors have not shown that the CGC of
SO(3, 1), in the general case, is an analytic continuation
of X functions from SO(4), though they have indicated
that this can be done by looking at the recurrence rela~
tions of the CGC of SO(3, 1). We shall given an explicit
demonstration in Sec. 4 that the CGC of SO(3, 1) are an~
alytic continuations of X functions from SO(4), based on
the results of Sec. 2. Finally none of the previous au-
thors, including Naimark, have indicated the possibility

2. THE BOOST MATRIX ELEMENTS OF SO(3, 1}

of a multiplicity-two problem in the CGC of SO(3, 1).
However, we show that the multiplicity-two problem ex-
ists in the decomposition of two tensor products of the
irreducible representations of the principal series for
the following reasons. 1. Just as in the case of SO(2, 1)
there is a multiplicity two problem in the tensor pro-
duct j,Xj,—~j,, where j,,j, js all belong to the continuous
series, because of the existence of two unitarily equiv-
alent representations, so also in the case of SO(3, 1)
there should be a multiplicity-two problem in the tensor
product (o,v,) X (0,v,) = (0,¥,) because of the existence of
two unitarily equivalent representations (ov) and (-2

- o, —v). In fact the multiplicity problem is the rule,
rather than the exception, in the tensor products of uni-
tary representations of noncompact groups. 2. The
previous authors considered mainly the case v +v,+v,
=nonnegative integer. However, for the most general
case, one should allow v to take negative values as well.
3. Looking at the formula for the CGC of SO(3, 1), we
see that it is obviously a complex quantity with 0 ap-
pearing at many places. We shall then show that the
multiplicity-two problem is connected with the complex
conjugate of CGC expressions.

In Sec. 2 we show that the boost matrix elements in
the canonical decomposition SO(3, 1) DSO(3) DSO(2) can
be written as two Fourier series whose coefficients are
CGC of SU(2) with complex arguments. However, with
the exception of the most degenerate case, i.e., dgn(8),
the second term vanishes for all representations of the
principal series, The continuation to SO(4) according
to Freedman and Wang is indicated. For the spherical
functions of SO(3, 1) we show how our expression is con-
nected with the work of Dolginov and others. We also
note that there are two ways of writing the boost matrix
elements, differing from each other by a phase factor.
This corresponds to two ways of writing the matrix ele-
ments of the generators of SO(#, 1), as pointed out by
Wong and Yeh.*® The proof for the orthogonality and
completeness relations of the boost matrix elements is
given in the Appendix.

In Sec. 3 we obtain an integral representation for the
single CGC of 80(3, 1), basedonthe work of Naimark!?~*
and Dolginov,'®'* and similar to the technique used by
Verdiev et al.”® but with some simplifications. In Sec.

4 we show that the CGC of SO(3, 1) are analytic continua-
tions of X functions from SO(4). In Sec. 5 we solve the
multiplicity-two problem for these coefficients.

Since the expression we obtain is a modification of Smorodinskii and Shepelev’s, we use the same notation for the
labels of the boost matrix elements. Thus the irreducible representations are characterized by ¢ and v where ¢
= ~1+ip, p continuous real and v integral or half-integral. The representations (o, v} and (-¢ — 2, —v) are unitarily
equivalent, while (o, v) and (=g ~ 2, -v) are the complex conjugates of each other.

Derivation of d97 ,-(6)

Start with Eq. (4) of Smorodinskii and Shepelev'® and complete the contour with an infinite semicircle in the right
half-plane of {. Using Stirling’s formula for the asymptotic behavior of the gamma function, one can easily check

that the integral vanishes on the infinite semicircle.

The contour from -k —iwx to -k +1ix should be so chosen that

all poles of the form T'{a +¢) lie on the left of the contour. We then obtain two series of poles, with the result

1769 J. Math, Phys., Vol. 18, No. 9, September 1977

M.K.F. Wong and H.-Y. Yeh 1769



dJ'mJ’( )

= (=1)27 *2m [(2J+1)(2J' + DU -m)l =) ~m)(J - V)!]‘/2 gflo-v-m 1
T+m)! (J+)I I +m) (' +v)! T(—J+m)D(=J +m)J —m)\(J —m)! 2mi

=R+ joo
x [ dt Tim+v+1 +t)I‘(—t)e'29‘dZ;' T(~dJ+m+d)T T+ m+d+1)Td+0o =-v+1 )T (=J' +m+d’')

—R i
XT{d' +m -0 + T +m+1+d)dIT(d+m=v+ D) d+m+o +2)d' I T +m -v+1)T(d' +m - o)]~*

1 [(2J+1)(2J’ + DT +m) T =) (I +m) (I - u)!}“z
[(m = v)1]? J=m) T+ )T = m) (' + )]

e 8(o~v=m)

Tin~o)T(m+o+2)

© _1)¢
X{Zl"(m+u+1+t)1‘(m—o+t) ﬂ_})__ eI (g —v+l=t),Fylo ~v+l=t,~Jem,J+m+l;m—-v+1, m+0+2)

t=0

X Fyim—o+t,~S +m,J +m+l;m-v+1,m=qg)

'

¢
+ Z Tm+o+2+)T(m —v+1+t) —— (= 1) A SRR bt of (U SISV |

t'=o
XSFZ(—J+m,J+m+1,-t';m—u+1,m+o+2)3F2(—J’+m,J’+m+1,m+t’—u+1;m—u+1,m—o)}. (2.1)
Next we define CG coefficients from Racah’s expression,® i.e.,
j1 jz J _ ji=-m (2j+1)(j1_+j2"j)!(Jz"nl)'(]+m)' ]JL'*"”)' 12
¢ =D T TG 1( i ]
m, m, m (Gatiet i+ DU =Jo+ D=y 4T+ D) G+ m) LG ~m) L (G, = m )]
o .
x [%} s Fo(j +my + 1, = e my =jy 5 =] =yt My Jp =+, + 1) (2.2)
so that
C(J (0 -v) (o +v) ):(_I)J_m[(o+u+1)(J—u)!(a—v—t)!(t+m+v)!(J+m)!]1/2[(0—;11)!]
! (0 =Nt o —f=m)l(J =m)! — )1
m t=3(c =) t4m=b(c 1) +o+DIJT+)l (e =Dt (o =t =-—m)lJ =m)! (m=v)!
X Fof+m+lm+t =0, =J+m;m—0g,m=v+1) (2.3)

[note that Barut and Wilson® recently derived Eq. (2.2). However, there is a factor (I, +m )!/(l, - m,)! missing on
the right-hand side of their Eq. (II.1.8)] and

C(J t(-o+v) =1 — (0 +v)-1 >:(_I)J_m[(—o—V—l)(J+v)!(—o+u—t—2)! (t+m=v)(J+m)! ]1/2
m)!

G - -l (ma = =Dl (=g =t —-m =] =
m oL+ (o ~v)+1 temel(o —v) +1 =0 =11 =)l (=0 =J =2l (~o=t-m=2)I{J

g =2 —m)!
X[L_o_i-ﬁz'—:lst(J+m+l,m+t+o+2,—J+m;m+o+2,m+u+1).

(m+v)t
(2.4)

By Eq. (A.9) of Ref. 10

FJ+m+l,m+t+0+2, -J+m;m+0+2,m+v+1)

- I‘(m+u+1)1“(J+1—u)}
= (1} —m - y - . - . 2.5
(=1) {1"(1}1,—1/+1)I“(J+1/+1) sFo(~t,J+m+1, ~J+m;m+g+2,m—v+1). (2.5)

Therefore we can express the boost matrix elements as a sum of two Fourier series:

’ ; ' /2
v oy (_py-ye| 2IH DRI TV —ip)! +w)1]l
din () =(=1) [ 7 =ip) [T +ip)!

x{ Z o200t ~(0- U)/2]-mec< HCESY)) 2(o+v) >C <J’ z(0~v) 2(0 +v) >

(o +v+1) m {=3(c—v) m+t—%(c=v) mt-s(ag=-v) mit=3(c-v)

1 - -26[t"(c=v )/ 2+ 1]1-mO

—_ e
TCe v 55
><C<J —5(c~v) -1 “3(c+v) -1 >C<J’ ~3(c~v) -1 ~z(o+v) -1 >§ 0.

m 3o =v)+1 m+t +35(c =-v)+1 m t+i(c =) +1 m+t +3(c —v)+1 :
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However, we can show that, with the exception of the most degenerate case, i.e., dog(8), the second term always
vanishes. This is because, from the same equation (4) of Smorodinskii and Shepelev [our Eq. (2.1)], we have the ex-
pression

T(o =v+1=t),Fylo~v+l=t,=J+m,J+m+1l;m=—v+1, m+0+2), (2.7)
which is equal to

[CE+DTm v+ DTm+ 0 +2)/T(t+1=J+m)T(t+2+ J+m)] Folt +1,m—o+t,m+1+v+t;t+1-J+m,t+2+J+m)

(2.8)
by means of Eq. (A3) of Smorodinskii and Shepelev, i.e.,
T(a) F,labe;ef)=[T(s)T(e)T(f)/T(s +b)T(s +¢)] sF,(s,6 —a,f—a;s +b,5+¢), (2.9)
where
a=g—v+l—t, b=—=J+m, c=J+m+1l, e=m-v+1l, f=m+0+2, s=e+f~a-b~-c=t+1. (2.10)

Substituting (2.8) for (2.7) into the contour integral (2.1) we find that the second series of poles have disappeared.
The contribution from the first series of poles remains the same. Thus we conclude that the second term in Eq.
(2.6) vanishes in all cases except when (2.7) cannot be transformed into (2.8). This exception occurs only in one
case, i.e., for the most degenerate representation diy(6). There the ,F, function reduces, after some transforma-
tion, to

(=0 =1)/(=)] ,F, (1,1 —t+0; =t +1)= (0 + YT (=t + 1) (=0 = 1)/tT(~)T(-0)=1. (2.11)
Alternatively, we can also see that for dge(6)
L Lo
c<° —so-1 -0 1>=1, (2.12)
0 t'+30+1 t'+30+1

Therefore, the second term in (2.6) does not vanish. In this case we can easily calculate from (2.6)
IOEDS
t=0

which is the correct result.

e

o .
01 (0t — om20GprD)) _sinpf , (2.13)

g+ P sinhf

Thus we conclude that the boost matrix elements can be expressed by Eq. (2.6) where the second term is always
zero except for the most degenerate case, i.e., v=J=J'=m=0. In what follows we shall neglect the second term,
when it is obvious that the most degenerate representation is not involved.

For the sake of future computation, let us note that dj.(6) can also be written in the following form

. rogy [( 2T + DT +1)1V2T W =iP) VT +30) T2 ot iomt/n]
av =(-1 (J'=d ) 2+ T+J"—2v [( _J ] 26 [t —(o=u)/2]-m6O
A (©) = (=1) wro +1)? 7 o) T +)! ,z% ¢

XC<J So-u)  3) >C<J’ Ho-0)  Eee) ) (2.19

- —t+3(0 =v) —~t=m+3(c =) -m —t+3(c—-v) =t=m+3(c =)

The CG coefficients can also be written in different ways as follows

c <J (o =v) (o +v) )=(—1)J'UC < J HeRS)) (o +V) )

m t=3(c~v) m+t—3{(c =v) ~m ~t+3(c=v) —m=t+3(c ~v)

=C( (o =) J {0 +v) >

—t+35{(0 =V) —m —m—t+3(0 ~V)

- (—l)t[(o+y+1)T/2C ( 3{oc-v) (o +v) J)

@7 +1) —t+3(c~v) m+t=3{c-v) m
3o +v) fo~-v) J (o +v+1) 2
=(-1)’C( ) —r . (2.15)
—m—t+3(c=v) t-3(0-v) -m \:(ZJ+1) ]

We shall not list all the different ways that the CG coefficients can be expressed. However, we shall indicate the
rule according to which CG coefficients can be obtained. The rule is: All 288 ways of expressing the CG coefficients
are allowed except where the phase factor does not give discrete values.

The symmetry properties of the boost matrix elements can be found in Ref. 10 and Riihl.?°
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From the fact that dj,;(0) =6, » we obtain the orthonormality equation for the CG coefficients with complex argu-
ments, i.e.,

i [(2J+1)(2J/+1)]1/zc ( J 3(c=-v) z(0 +v) > c (J/ (o -v) (o +0) > 6, . (2.16)

- g+v+1)?
t=o ( ) m t—-3(0=v) m+t—3(c=v) m t=%5(c-v) m+t-3(c—v)

Connection with Freedman and Wang?®

With the substitution 8 - -6, u=-m—¢+3(¢ —v), m— —X we get Freedman and Wang’s result®® exactly except the
phase factor [(J —ip)! (J’ +ip)!/(J* =ip)! (J +ip)!]¥?, which we will discuss shortly.

Connection with Dolginov et af.15- 1

Dolginov et al. have obtained the spherical functions dJg oo(f) and d7%,.(8) in terms of CG coefficients with complex
angular momenta. Comparing with our result, we find

dye(8) = (=1)7Y2[(21 + 1) —p)1 (50)! /P*(~ip)! (I +ip)!] /211, (n, @),

where a= =6, UL=f{-30, 50 =J with

R 1 1 1
I],(n,a)=%zez“°‘c<20 29 (2.17)
w 0 i

as obtained by Dolginov and
A0 (0= (=1)%" =2 —ip)1 (17 + 101 /(1" ~ip)} (L +iP)1 ]2 Q) k(9)
with

A=m+t—- % )\:t—.%o-’ k:_nz’ w:_e’ J:%O.,
where

fllJlk (y)= ECJ AN C.r AJ MY (2.18)

We see therefore that the summation index according to Dolginov’s expression is a complex number but summed
over integral intervals. This is a point which is not obvious when one continues from the compact group to the non-~
compact group. We only learn about this complex number when we evaluate the d function of the noncompact group
directly. We may also mention that in a way it is good to have a complex number for the magnetic quantum number,
because then the phase factor (=1)*™ or (~1)’ ™ in the formula for the CG coefficients can be suitably defined so
that either j+m or j —m is an integer.

The phase factor [(J - ip)! (J’ +ip)!/(J’ =ip)! (J +ip)!]*/? in Eq. (2.6) is due to the fact that the matrix elements of
the generators of SO(z, 1) can be written as complex, as Chakrabarti®' has shown. However, we®® have also shown
in a previous paper that the matrix elements of the generators can be written as pure real or pure imaginary. In
that case the phase factor in Eq. (2.6) will disappear. We thus conclude that there are two ways of writing the d
functions of SO@:,1), one with the phase factor, which is equal to the inverse of w, of Maekawa,*® corresponding to
complex matrix elements of the generators, and the other without the phase factor, corresponding to pure real or
pure imaginary matrix elements of the generators.

In the Appendix we give a proof for the orthogonality and completeness relations of the representation functions of
S0(3, 1).

3. AN INTEGRAL REPRESENTATION FOR THE = (4r%) [ dp, 2 2+
CG COEFFICIENTS OF SO(3, 1) R

In this section we wish to obtain the CG coefficients % fdu3f(03u3)(us) (670309) Yaugrg), (3.2)

of SO(3,1) for the principal series in the most general

case: (o,v,) % (ov,)—~(0v,). For the time being, we where
shall ignore the multiplicity -two problem and follow b(alczuz)=W3/2(Sin%912)-i py =i pp=tp3=1 (Sinégls)-hiplﬁagﬂ'o:;
Naimark’s work,'?™'% used by Dolginov and Moskalev!®
to obtain the CGC of SO(3,1). We have, from Naimark, X (sing Q)i P1mteariesl, (3.3)
f<03u3)(113)= fdul S/ Aty Forv W1 ) (o, (112) c08§2;, = cosf; cos b, + sind, sinb, cos(d; - d,).
Strictly speaking, there should be a phase ¢(*®/2/2)¥
*Doyay0y) (attztts), (3.1) attached to each of the three terms in (3.3), since

1772 J. Math. Phys., Val. 18, No. 9, September 1977 M.K.F. Wong and H.-Y. Yeh 1772



| &5y = £,mp | 2721071, — £41p)™
=(sin3 le)v'“"l(sin% le)"’e‘ (B0 /21 /2)u’
where

b=0; - ¢3 -1 - ¢5,

sing 8, cosz 6, sin¢
sinz 6, cos; 6, — sinz 6,cosz 6, cosd ’

7, % . . 3.4

n =& coss 8,e'°1/?  isinz6,e'®i/? (3.4)
u; = = ,

& m —ising 6,e™%/2 cosh et/

i
G+,

tang =

b= o1+ 0, o;=0i-

But the phase cannot change the absolute value of the
matrix elements of the generators of the group. As we
have shown in a previous paper,® the extra phase cor-
responds to writing the matrix elements of the genera-
tors as complex. We can therefore put ¢=0 in Eq.
(3.4), and deal with the absolute value only as given by
Eq. (3.3).

Now we follow Dolginov and Moskalev!® and write
(sinz 12)2«-2_21? L(@QL, + D)% (c0s,,),
(sinkQ,,)®"2= 2 Fy ()L, + 1)dg2 (cos®,), (3.5)
(sink 923)2‘:'2=2FL3(C)(2L3+ l)df;(,(cosﬂzs).

Then
F,(g)= fo " (sing Q)% 27, (cosf) sinQde, (3.6)

where
d%, (cosQ)=[(L+m YL —mW /(L =m N (L+m)I]*2
X (cosz QY™™ (sing Q)™ "MPP_ ™ (0080,
(3.7
From Eq.(3), p. 284, Vol. 2 of Erdelyi et al.,*® we have

1 , -
Fr(g)= [ 277 (1-x)" (1+x)" p2®(x)dx
=[20(p'+ 1)T(0" + 1)/T (0’ + o' + 2)]
X F(-n,a+g+n+1,0+1;a+1,p +0"+2,1),

(3.8)
where
a=z —5i(py+ P+ py), b=z +3i(=pi+py+py),
c=3+38(0, = P+ p,), pi=a-1+v,, ol=v,, n,=L, -v,,

- L ! = p -
=y, B,=V,, Pp=b-1-v,, o,=v,, n,=L,,

o p— (A ! - -
A ,=—V;, By=Vy, pg=C—-1+v,, 0i=v,, n;=L,-v,,
a,=v,, B,=V, (3.9)

Next we have
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df (cosf,)= sz"l (cosé))dLlo(cosez)

on, (C0S%,) =§é do?, (cos 6,y (3.10)

l,3(cos 8,),

dfo(cosﬂm) EdL3 (cosﬁz)dj' 7o(cos6;).

Therefore,
dfll"(cosﬂl2)d'§v23(c0sQw)df;o(cos{zzs)

L, L, I L, L, 1,
= Z d:}m (cosel)C< c<
Filals 171 v, 0 v, m{ m; m,
mym My

X (=~ l)midizzmz(c()sez)c <L1 L, lz) C (Ll L, l2>
2

] ol
0 v, v, my; mg m

(Ll L3 l3>
v, 0 v,

x(- 1)'"3"‘3d,1,§m3(cos 6,)C (L2 Ly 1o > c
: 3 3
(3.11)

o’
m, my m

1 1
where my=z(m,+niy, —m,), my=30m, +m,~m,), m,

=3 (my+ my —m,).
Corresponding to Dolginov’s'® f,,.(«), we use
favlm(ui) = (21+ 1)1 /zilum(ui)

Thus Dolginov’s phase factor 4,(c) does not appear in
our equations. From (3.3) the » can be expressed as

= Z [(21,+ 1)(21,+ 1)]* /2B, a,1,C (ll l, l3>
)

10505 " :
e ny, My, niy

(3.12)

919293

Xf"l"l’l"‘l(ul)f"z”z’2"‘2(u2)f°3"3’3”‘3(u3)’ (3.13)

By, = z w32 1E 22 + 1)1/

R v 2 2%
X (20,4 1)"3/2(21,+ 1) /ZFLl(a)FLz(b)FLS(C)

X (2L, + 1)(2L,+ 1)(2L ,+ 1)C (L1 L, zl>

v, 0 vy

xC (L L, 12> c(Lz L, la) W(L,Lyl,ls; LY.

0 v, v, v, 0 v,

(3.14)
Next we define

Yy (@) = (02 + v 2D, (a)

= mEm 0t QO o e (€ Vet gn, (NP + V2,

where a=ucu’,
the boost

(3.15)
Now use the integral representation of
Ao mimm (€)

= [du,(2v+ D220+ 12 @0 (0, ) V(€ Vetymes (1))

= [du,(2v+ 1220+ 1DV ()70 (1, et (1)

(3.16)
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Substituting (3.16) into (3.15) and summing over »’and

m"”, we get

Yolim(a)= fdu (2v+ 1122204 11 /27\(u1u-18-1)-2-zip

X ﬁ"w(uu'le—'l)u,’,,,,(ulu’)(p2+ vz, (3.17)

Using the definition of f,,,, () in Eq. (3.12), we canwrite
(3.17) as

T (@) = [ Foy(@,4,) fovymlte,) du, (3.18)

Multiply both sides of Eq. (3.18) by fo m{%,) and sum
over I, m, using the completeness relations of the basis
functions fg,;.(%,); We get

ch(a;ul) =E‘I’
im
Substituting (3.12) and (3.17) into (3.19), we get
w(@,u,) = [ dul(@v+ 1) [A(uu"1e"1)] "2721¢
X @Y, (ulute ) (p2+ 1/2)1/2(5(141 —uu’)

=(p? + V22(20 L 1)2[ A (u, u'"1u"1g"1)] 272 P

Svim@) Fovim(ty) . (3.19)

X @Y, (uyu' " u~lel)
= (p? + V)2 N(u, &
Xfouuv(ulu-le-l) s

where # =un’,

71 -1)] 2=2i P

(3.20)

Substituting the value of Fy,(a,%,) in (3.20) into (3.18),
we obtain the following result:
uvlm(a) (D + VZ)I/Z(V?‘ lg-1 owv(ul) foyxm(ul))
= (024 V2 (Foun (), VeaSaurm(®,)).

It is clear that the results are still valid if, instead of
o, ., we start with ¥/, (2). Thus we have obtained
the following result which we shall state as a theorem.

(3.21)

Theorem: The transformation between the basis vec-
tors ¥§7,,,(a) and fo;m(%,) is done through the follow-
ing two equivalent equations:

\Il?’vm’lm(a)
. =(P2+ Vz)l/z(Vﬁ'le'lfaul’m'(ul), fovlm(ul))
=(p2+y2)1/2(f0”,m,(u1)’ Veﬁfoulm(u1)),

where

(3.22)

a=ueu' and d=uu’,

Using (3.18), we have

\1’31”1’1”‘1(01) v 2"2‘2 2( a)
=J au,du Fy y (@,u))F,, 0, @,u,) o vy0im ()
f"z"zz (u 2)

-_-(41r4)—1fdp3v2(p§+V§)fdulduzdu3F,,1,,1(a,ul)
3

XFozvz(a:uz) bclozca(u1u2“3)fc3v3(u3) s (3.23)

where (3.2) has been used in the last step. From (3.1)
and (3.13) we have
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f°3"3(u3) :Z(le +1)1/2(2[ +1)1/2Bl ,
3

1 2 3
ll l2
x € Y foug ). (3.29)
ml m2 m3
Now define
I =fffdu1du2 du, F, (a’ul) 5 uz(a,uz)
xb°1°2°3(u1u2u3)f"3"3'3’"3(u3)' (3.25)
Next define
uf=u;u"te”l, (3.26)

Then following the same argument as in the Appendix of

Dolginov and Moskalev,'® we have
(M =te1)] 727 20P = (uje )] 2*2t 0 (3.27)
Boyogoa(s)

=bg o0 (#)Mujed)] 2P 2N (uged)] 72 P2 "

X [A(uled)]2iPs2 (3.28)
dug =duj/[Mujed)]*. (3.29)

The arguments go through because all the quantities
involved are independent of v, as one can see from (3.3).
Therefore,

I=(0}+ BY2(p2 +v2M2@u; +1)%22v, + 112 [[[ du dujdu;

Xbg oy0,(#1t5u )M (ug en)]zreie, as05tamy( s ed)
xu,, v, (u')u (u') (3.30)
But
wht, () =@y + )TV F, L (). (3.31)

Mu1t1p1y1ng both sides of Eq. (3.13) by u,,l,,l(u{)u‘,jg,,z(u;)
and integrating over u;,u;, we obtain

_ _
Jf g oo (urugutyult, (ul, (ug)du; du}

_ 1 2 3
= c(

172°3
v, V2 V1+U2

)f03y3u3y1”2<u;). (3.32)

Substituting (3.32) into (3.30), we have
I=(p2+v3)2(p2 4 w2)V2(2u, +1)2(20, + 1) [ du!,

X[Muged) 205 Sy g m (482) By

3
V. V, V, o ——— e
1 2 3 ’
XC( >f03v3v3u1+u2(u3)
Vl v, Vl +V2

2

= (P} + VIR VR @n + 1122y, + 1A 4 V)

— v [ v,
xBy .y c( 1z ) T332 1amy (@) (3.33)

2°3
v, Vz V1+V2

From (3.23), we have
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m (@)X

o v
2 222752 (6)

u u i Vz”z

1Y1h™

- @r)y J"’arpuyv_j(pg+u§)(2ul A1)y, 1 1)

0

i, 1
x[ZB, Iyl < 2 3>

ﬂl m2 n‘l3
=@n )t [ dog Y (03 + VIR + V(05 + VI
0 Va
X (2v, +1)2@2v, + 1)¥2(2L, +1)Y2 (20, +1)¥2) B
i3

l i L\ —— v, ¥, v,
X C ( 1 2 3 Bvl u2u3 c 1 2 3 )
m, m, m, v v, V4V,

2

Iialy

X\I/OBVS

ysul

- (3.34)

Thus we obtain the CG coefficients of SO(3 1) in
the tensor products of the basis functions \1/,, y ’i”‘i( a),
i=1,2. The functions B, L1, 7€ the mtegral represen-
tations of X functions w1t1h complex angular momenta:

By 1y1,= (2137 $(0,0,0,)

zlog+v,) zlo,-v) 1,

xX ;f(gz“”’z) %(02"’2) Ll (3.35)

3(o,+v,) 3(05-vy) I,

where ¢(0,0,0,) is the same phase factor as obtained by
Dolginov ef al.'>'® since, again, it is independent of v:

¢(010203)
=3772(p,p,0,) Tz —zi(p, + P, + p,)]

Xr{z‘*‘zl( p1+p2+p3)] [ %.(fh‘pz*‘pa)]

Xz +2i(= p, = pp+ p) [T (1 —ip )T (1 —ip )T (1 +ipy)]

(3.36)
and

| ¢(0,0,0,) | 2=sinhmp, sinhmp, sinhmp,[4 coshzm (p, + p,+ ps)

x coshzm (p,+ p, — ps) coshzm (o, ~ p,+ ps)

x coshzm (=, + py+ pg)]™ (3.37)

One more remark about the expansion (3.34). It is
easy to see that the expansion (3.34) is not limited to the
basis function ‘Ilgizxx m;. It is still valid for an arbitrary
basis function ‘l’;gmgx;m{ All one has to do is to replace
the correspondmg quantities (v, and v,) by 7} and w/,

e.g., Bvlvzv Blil’zlg and

C<V1 Vo Vs >__C(ll1 I l;) ete
, .
Vi, YV, VU +V, my m, mj
We have thus obtained an expression for the single
CGC of S0(3,1) in a form simpler than those obtained
by previous authors.*!™?* Moreover, it is expressed

as a product of 3j and 6;j symbols of SU(2), since from
Eq. (3.8) one can change #;(a) into a 3j symbol too,
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4. CG COEFFICIENTS OF SO(3, 1) AS X FUNCTIONS
WITH COMPLEX ANGULAR MOMENTA

In this section we shall give a justification why the
CGC of SO(3, 1) obtained in the previous section are
X functions with complex angular momenta. This is
based on the results of Sec. 2, where the boost matrix
elements have been expressed as a Fourier series with
CGC of SU(2) with complex j and m. Of course, this re-
sult can also be inferred from analytic continuation
from SO(4) to SO(3, 1), and by recurrence relations of
By 1014 with different values of [, showing that they obey
the same equations as the X functions with complex an-
gular momenta, However, we prefer to justify our
statement from a more direct, group theoretical point
of view,

First we note that the Lorentz group with generators
M, and N;, i=1, 2,3, satisfying the commutation rela-
tions

(M, ,M,)=ie;,M,,

) ) (4.1)
[N, Ny) = —i€M [M,N,] = i€; N,
can also be written in the following form:
[J;,d:) = i€ s, (4.2)

(K, K,|=i€;,K,[J;,K,]=0,

where J,=5(M,+iN,), K,=3(M, - iN,).

As shown by Smorodinskii and Huszar,!! the repre-
sentations of the Lorentz group can be considered under
the two parameter subgroup H=S0(2)X SO(1, 1), with J,
and K; as generators. Since J; and K, commute, it is
obvious that the representation can be considered as a
direct product of the two groups generated by J; and K,.
Moreover, it is easy to see from Smorodinskii and
Huszar’s work and the form of the d function obtained by
us in Sec, 2 that the transformation from one basis to
another is effected by the CGC with complex j and m,
i.e.,

gV

3(0-v)
1 )=Y,

X
s m-k k

o+ v)

Hi

><c<é(o+u) 3(0 -v) l) (4.3)
m -k k w

where % is a complex number, but summed over integral
intervals: k=t-%(oc-v), 1=0,1,.,.,®

Because of the Burchnall-Chaundy®* formula, the CGC
with complex arguments defined by us in terms of ,F,
functions with unit argument is indeed the coupling co-
efficient for two representation functions with J, and X;
as generators which, as shown by Smorodinskii and Hus-
zar, are expressible as hypergeometric functions.

Since the CGC with complex angular momenta and
magnetic quantum numbers exist, the following expan-
sion is meaningful, where the summation over continu-
ous 0y is to be understood as an integral:
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o, V o, V
L 272 %(O'I-FVI) %(02‘*‘”2)

ky

% (Uz - Vz)
L x| X

3(0, - v,) z(oy+v) 50, -v)) 1,
X C X
1

m; -k ky m, -k, m

k
Rk, 1

% C %(02"' v,) %(0'2_”2) I,
k, My —~ky m,
Z 30,4 vy) c (% (o,+v)) 3(0,+v,) 3o+ 93)> 3o, —v,)

(agrvg) /2, (ogvg)/z | Ryt By ky L2 Ryt kg
Ryrky

"y —Ry

m, n,

m+m,—k, -k,

“C <%(01 -v) 2(0,-v,)  z(05-v)) >c (%("1“’1) 2oy -v) 1, >

my~ky  m,—k, myt+m,—k -k, ky my o~k my
i
xc<§(02+v2) Lo, —vy) zz)
k, My ~k, My

g, v
- Z 873 c 2(05+ ) 3o, —v,) Il c 3(0,+v) 3(0,+v,) 5(0,+v,)
I
8 ky+ky, m+my—k —k, m+m, k, R, B+ k,
m,+m

1 L
X c E(Ul - Vl) 5(02 - Vz) %(03 - Va) > C %(01+ Vl) %(01 - Vy_) ll C %(0-24' Vz) %(02 - Vz) lz
my~ky Mmy—k, m+my—k -k, ky my -k, k. 2

my—ky, m

o, v, z(oy+v,) 30, -v) I,
=Z I X|z(0p+v,) 2(0,—-v,) L|C Lol ls )(le+l)1/2(2l2+ 1)2(p2+ p2N /2
s mormy)  3logrvy) bo,—vy) L VT e Tt
z(o,+v,) 3(0,-v) I, o, v,
=§3 fo “dpg(p§+1/§)1’2(2ll+ 220+ 112 X (5 (0,4 v,) 5(0,-vy) L, c<l1 £ ls> L . (4.4)
Sog+vy) Slog=vy) Ll e e M,

Since the state in SO(3, 1) differs from the state in SO(4) by a phase factor [(J - ip)!(J’ +ip)l /(J’ = ip)I(J +ip)1]/2, the CG
coefficients of SO(3, 1) will also differ from the CG coefficients of SO(4) by a corresponding phase factor, which has
been calculated by Dolginov and Toptygin'® and Dolginov and Moskaley.!®

| #(0,0,0,) |? = sinhmp, sinhwp, sinhrp,[4 coshim(p, +p, + p,) coshi(p, + Py — P3)
xcoshzm(p, — p, + p,) coshzm(—p, + P+ p )] (4.5)

The orthogonality and completeness relations for the X functions can be easily deduced. From (3.1) and (3.2) we have

f fbolazqa(uluzua)baluzu‘:';(uluzu;)dulduz =470 + v3)20(0, - G:’i)bugugé(uii - ul),

(4.6)
Ef fbolozos(uluzus)bol vzos(ulluéus)(pg +v3)dp,duy = 410 (u, — u])0(u, — uj). (4.7)
V3
From (3.13), (4.6), and (4.7) we obtain
so +v) 3lo,-v) [ io,+v) 30, -v) 1,
| p(0,0,0,) |2 11212 (M2 +V3)20 + 1)(2L,+ 1)X 1 3(0, + v,) 3(0,-v,) L,| X|5(0,+v,) 3(0,—v,) L] =d(0, - 0;)6‘,3",3,
o, +v,) lo,-v,) I, Hol+vl) 3oj-v!) I,
(4.8)
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%(0’1 + Vl) ‘ZL(UJ_ - V1) l]_ %(01 + Vl) %(01 - Vl) l{
Z;f(pg +12)dp, | ¢(0,0,0,) |22, + 1)(2, + 1)X | 3(0, +v,) 3(0, - v,) L,|X|3(0,+v,) 3Ho,~-v,) I}
Y3'a

o, +v,) Hog-vy) L] (3o,+vy) 3(0,-v) I,

u A4

xe[ b B BYcfH B BY.s, .5, .5, 6
b, ) iRl T mymy
m, m, m, m{ mh m!
%(01'*‘”1) %(01—1/1) l]_
Z[l(b(olozca)|2(2l1+1)(212+1)(p§+1}§) X 30, +v,) 3(0,~v,) Lj| dp,=1. (4.10)
3

o+ v,) Ho,-vy) L

(4.9)

5. CG COEFFICIENTS OF SO(3, 1) WITH MULTIPLICITY TWO

Just as in SO(2, 1) there is a case of multiplicity two occurring in the decomposition j, X j, ~j,, where all three j’s
are continuous, so also in SO(3,1) there is a case of multiplicity two occurring in the decomposition of two principal
representations into a third one. This is because of the equivalence of the two representations (0,v) and (-0 -2, -v).
In fact, this statement is true for the decomposition of tensor products of the principal series of all SU(n, 1) and
SO(n,1). The solution is not difficult to find. First let us define the X function as follows:

é(O'l + Vl) %(01 - Vl) j1

X|3(0,+v,) 20, - v,) Jp | =2, + 1)(@j, + D(f + ) ]2 MZMZ c(jl B2 s )

. -m -m -, - M
%(03"' V3) %(03— Vs) .73 t tp 1 2 1 2
1 1
X C < ‘2‘(0'1 - Vl) E(og - Vg) %(03 - Vg) )
—t+3(0,-v) —L+3(0,—v) —t, ~ b +35(0, - V) +3(0, - V,)

X C ( %((72 + Vz) %(01 +v,) %(Us +v,) )

—my = b+ 5(0, — wy) -~ +3(0, = v) —my —m,— b = b+ 3(0, - v) + 30, - v,)

XC( 3o, + 1) CETA N >C< (0, +,) Hop-w) 4, )

-my =t +3(0, =) £ —3(0,-v) -m, My = b+ 3(0, ~ vy) b - 30, - v,) —m,

% C< Ja 30, - v,) oy +v,) )

-y =y =t = b+ 3(0 = 1)+ 3(0, = V) —my =y~ b — b+ 3(0, — v) +5(0, = v,)

X (27, + 1)/ 2(0, + v + 1)1/ 2, (5.1)
The advantage of Eq. (5.1) is that we have now
%(01 + V1) %(0’1 - Vl) j1 _%(0-1 + Vl) - 1 "%(01 - Vl) - 1 jl
)_{ %(0.2"' Vz) %(02 - Vz) jz =X —%(024'1’2)" 1 ’%(02‘ uz)_ 1 jz . (5-2)
%(0'3 + V3) %(03 - Vg) j3 "%(03 + Va) - 1 —%(03 - ug) - 1 j3
This is because
6( _21—(0'1"'1"1) -;:(01“ Vl) jl =C -—%(Ul-!"l/l)— 1 ‘%(0’1- V])_l j1
—my - b+3(o, - v) t -0, -v) -m, -y -t~ 30, ~v)) -1 H+3o, -v)+1 —-m /)’
where —t =t +m, +v, +1, (5.3)
C< I3 z(0; - v,) (0, +v,) (=0, +v, —1)2/2
3 3
-my —my —t - t2+%(0’1 - V1)+%(02 - V) —my—my—t - t2+§(0'1 - V1)+%(02 - V)

. 1 1
=C< Ve _2(03-1}3)_1 —2(03+V3)_1 )(—0'3—113—1)'1/2,

-, - My —tl'—l(é—%((fl—Vl)——‘é‘(O'Z—Vz)—Z "mx_mz'—t{"té—%(al_Vl)‘%(oz—"z)-z
where -t =tl+m +v, +1, —t,=t]+m,+v,+1, (5.4)
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ﬁ( %(0'1 - Vl) %(02 - Vz) %(03 - VS) )
)

—tl+%(01 - Vl.) _t2+%(02 - V2) _tl - t2+%(0'1 - V1)+%(0'2 - Vz

_ C( -3o,+v,) -1 —3(o,+p) -1 ~3(0,+p) -1
b
—My =ty —3(0, = Vo) =1 —my =t = 30, = v) =1 —my = my— 8 = th = (0, ~ v)) = $(0, - v,) - 2
where —f =t{+m +v, +1, -, =ti+m,+y,+1, (5.5)
C( 2o, +v,) 3o, +v)) 3(0,+v,)
My = b+ 5(0, = V) = =t +5(0, = ¥,) =y —my— b — 1+ 30, = 1) +3(0, - v,)

=C< ’%(01—1’1)"1 _%(02"1"2)"1 -%(0-3"”3)_1 >

~tj— 3oy -v) -1 1]~ 2oy -v) -1 -t ~t] - 3(0, - ¥) - 3(0, ~ Vo) =2

where —f =f{+m +v,+1, —f,=tj+m,+v,+1. (5.6)

Equations (5.3)—(5.6) can be easily checked from the definition of CGC as ,F, functions with unit argument, as de-
fined in Sec. 2. Let us also remember that the CGC can be written in different ways as we have shown in Sec. 2.

In particular, the change of variables from ! to ¢/, so that {= -’ -m -v -1, corresponds to completing the contour
in Eq. (2.1), in the left half-plane instead of the right half-plane.

The fact that the CG coefficients of (-0, -2, —)) X (-0, - 2, -v,) = {-0, — 2, —1,) is equal to the complex conjugate of
the CGC of (o)) X (0,v,) = (0,7,) can also be seen from the original equation of Naimark, Eq. (3.3). It is clear from
Eq. (3.3) that

balczca = b-ax-z,-cz-z. -05=2 (5 . 7)

since the v’s are not involived.
One can also see from Eq. (3.5) that this must be so. The complex conjugate of Eq. (3.5) is
(sinzQ,,)"® —Zr(a)@L + 1) T (cosf2.,) (5.8)
2342 _L L 1 v, 0 12 °

1
and similar expressions for b and c¢. For the unitarily equivalent representations, it is

(sin®,,) > = LZ) Fy (@@L, + 1)d-} 5(cos®,) . (5.9)
1
Since
dfllo(cosﬂm) = (—1)”1d_"v11°(cost2) s (5.10)

FY (a) can differ from F_L:(a) by at most a sign. From (2.14) and (2.35) we conclude that
2(0,+v) 2(0,-v) ],

X2(0,+v) 3(0,-v) Jo

30y +v5) 2(0,-vy) Js

can differ from

Heo, ) =1 H(-0,4v) -1 j,

X %(“02—1/2)‘1 %(_0-2'*'1}2)—1 jz

3(~0, - ;) - 1 2(=0,+ V) - 1

by at most a sign. That the sign is + can be seen from the other arguments, as well as from substituting particular
values into the expressions and checking them.

Thus the Clebsch-Gordan expansion of SO(3, 1) for the principal series can be written as

01 Vl 02 V2 0'3 Vﬂ
= l (o c oV
LWL =% f dp, | 1, c(ll b 3) ci(l”l 2’2 % 3), (5.11)
m, m, i=1,2 v3ly m, m, m, L L
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where

(o3 .
C1< 1V O 0'3V3)=N1[ (p§+ Vg)(211+ 1)(22,+ 1)]1/2
L L L

%(01"' Vl) .é—(o.]_ - Vl) ll
+ B(0,0,0)X | 5(0,+ v,) 3(0,-v,) I,
%(03 +Vg) 2(05~vy) L

where

¢ (010203))(

%(0'1"- V1) %(0‘1 - Vl) l1

%(02"' V,) %(02 -v,) 1

%(G3+ V3) %(0'3 - V3) lg

N2=1/@2+ 0%+ 32, ¢2=p,p,p,T 2(@)T2(B)T*(c)T*(a+ b+ c - 1){dn)"[T(a+b)T(a+ )T (b+c)]?,

62 = p1p2p3r2(1 - a)r2(1 - b)rz(l

cz(olVl OV, UaVa) =N, [(20+1)(21, + 1)(p2 + V:Z’)]I/Z (0,0,
l

1 Z2 l3

where
N;=1/(2 -2¢% - €3?),
e=(1+9%/(1+ 99,
z=1/e.

)22 -a-b-c)dm T2 -a-b)T(2-a-c)I'(2-b-c)]"2,

g,)X

’ (5.12)

(5.13)
%(U +V ) ;_(0‘1—1/1) ll %(01+V1) %(ol_vl) ll
3(0,+v,) 3(0,~vy) 1| —eBX |3(0,+v,) 3(0,-v,) I,
%(O’ +V ) %(0-3 - Vs) l3 %(0’3"' Vg) %(03 - Vs) la

(5.14)

(5.15)

(5.16)

(5.17)

Upon continuation to SO(4), by setting the phase factor ¢ =1, C, becomes the X function of SO(4), and C, becomes
zero. Moreover, it is easy to see that C, and C, are orthogonal, because both X and X are normalized according

to their definition in (5.1).

Since the X functmn is connected to B, 1l by Eq. (3.35), the complex conjugate X is con-

nected to E, 151 by taking the complex conjugate on both sides of Eq (3 35).
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APPENDIX: ORTHOGONALITY AND
COMPLETENESS RELATIONS FOR THE
REPRESENTATION FUNCTIONS OF SO (3, 1)

We give here a proof for the orthogonality and com-
pleteness relations of the d functions of SO(3, 1) for the
following reasons. 1, We have not seen in the literature
a direct proof of the orthogonality relations for the d
functions. 2. Verdiev®® gave, we think, an erroneous ex-
pression for the normalization constant in the orthogon-
ality relation of the d functions of SO(3, 1). 3. Our meth-
od can be extended to other groups. Thus Gel’fand and
Graev®® have obtained the Plancherel formula for uni-
modular complex groups. One can then use our method
to prove the orthogonality and completeness for the rep-
resentation functions of unimodular complex groups
based on Gel’fand and Graev’s result.

The completeness relation is basically contained in
Riihl,*° Eq. (4.32). We shall therefore give a proof for
the orthogonality relation only. The orthogonality rela-
tion is

(] -Jo b
J D3, o@D sy @) a)
=81 (1% + p%)16(0, - 0,) 5V19261112511.1§6m1m2Gmimé ,

(A1)
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r
where

a=udu,,

dula) = (4n)" dpu,)dulu,) sinh®6 46 ,
[ dut;)=87.

The limits of integration over € are from 0 to «,

We need the following equations for the proof.

K{(uwu, mp) =7 fx(u‘lkul) a k) dk (A2)
a a(ua)

x(a) = (2m)™* K )

x{a T m_-w f {f Uuamp oo :l
x(m®+p*)dp , (A3)

Gata) T2%1j202) = [ %@ D, 5,0, (@) du(a) (A9)

wa =K lua, (A5)

amp(k)=| AIiP-m—ZAm’ (A6)

m=2v, ip=2(c +1)=2ip0. (A7)

Equation (A2) is taken from Naimark,3” Eq. (5), p. 205.
Equation (A3) is the main content of Plancherel theorem
for SO(3, 1) and is taken from Naimark,®’ Eq. (16), p.
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232, Equation (A4) is a definition. Equation (A5) is also
a definition, taken from Naimark,*” p. 158. Equation
(AB) is the multiplier, taken from Naimark,%’ p, 149.
Equation (A7) just expresses the relation between dif~
ferent notations.

Proof of orthogonality, Eq. (A1)
Substituting Eq. (A3) in Eq. (A2), we get
Klyuymp) =1 [ x(ui buy) @,0(k) d,k

=m{2m)~* 2 f dp'(m'®+p’?)

mi= =
X [ apole) d kK (u, un “kuym'p’)

Qo (7 oty )
R (A8)
O e or (eta T Prt)

Now put u =u,, then uu] ku,=k™ u,u; ku,=u, and

U T P2, ) Oty (Bty)
e N ) (A9)
o Gt RUs) 0t e ()
Thus we get from (A8)
1(321%) 7 [ a,p(k) @,y pr ()
xdkdu=(m* +p?) " 6(p = p’) B - (A10)

Now we start with Eq. (A4)
<j1Q1| T?'jz‘].e) =fx(a)D"'

LIRS

@ dule)
:ff‘i’l(li/z)ml (u,) K (uyu,mp)

X@ff/z)mz (s ) due, du,

_fff¢(1/°)ma (1) 17 o) v plle) dye

><¢g oy (up) du, du,, (Al11)

where
O /ma 10 = (25 + 10224y 15,0 00)

Now put x(az) =D7F .. ,(a) on both sides of Eq. (All)

J q J q
while writing
0/2 0
uythu,=u,du, , d= (e > . (A12)
0 -8/2
Then
x(uitku,) = D;"'f i (u,,dub)
= ut K u Yar . q,,(e)ujzﬂq,z(ub). (A13)
qIQ"

Now use the integral representation of the boost matrix
ml pl
diiiz' q'lqg (6)

= [ Uhrmar, @ TG, 12N, )]

><u

(1/2),": u(ud)du(2]1 +1)1/2(2] +1)1/2

(A14)

Substituting (A14) into (A13), we obtain

1780 J. Math. Phys., Vol. 18, No. 9, September 1977

m! p?
D, ig a3t dtty )

= ey O3 Xty DI )™

XU ey Gty (2 + 1) (2 4172, (A15)
We now set
wy=ui M. (A16)
Then from (Al12) we have
wi by =uy u” eu, =u du,
or (A17)

w tku,=du, Or u,=k ‘udu, =udu, .

Substituting u, and », from (A16) and (A17) into (A1l) and
integrating over u,,u,, remembering the orthogonality of
SU{2) representation functions, we get

fDJ":%ﬂz 2(a)DJm1"1’ “2(0) dpa)

=1 [ apll) @y (R) dRedu

(A18)

mm' 3

X 6, (0,04 0 a3, 0

i 12’2 93
where we have used (A6).
{A18), we obtain

Finally, applying (A10) to

fD.;"’G]lll q (a) ] q L cz(a)d“‘( )

(A19)
(A20)

=321 (m? +p%) " 16(p - p') b,

m! 51'1"{ 6‘714'1 éJ'212 LS

=81%(v* +p3) 6y~ ph) By ; , 5

i3] 47}

This completes the proof of the orthogonality relation,
Eq. {Al). It is easy to obtain from (A20) the orthogonal-
ity relation for the boost matrix elements, since the
SU(2) representation functions are themselves orthogon-
al. Thus we have

i 50 0g g1 -
T2l 9297

2% m(6)d;7 Y, (6) sinh®0 a6

Tyl m

22

= (1) 7(25, +1)(2j, + D (2 +p2) " 8(po—pb) b . (A21)
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Conformal Killing tensors in reducible spaces
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It is shown that the dimension of the vector space of second order, trace-free conformal Killing tensors
(CKT’s) in a Riemannian space of dimension n(> 3) is bounded above by (1/ 12)(n —1)}(n+2)(n+3)(n+4)
and that this is attained in flat space. The discussion is eventually restricted to four-dimensional spaces
which admit a two-dimensional, Abelian, orthogonally transitive symmetry group, as well as one
nonredundant CKT. A sufficient condition is given for an empty space to be Type D.

1. INTRODUCTION
A symmetric tensor, @ ,,, satisfying

@ (apin= Qe (1.1)

where &, is some vector and g, is the metric tensor,
is called a conformal Killing tensor (CKT for short) of
order two. If @, is zero, then it is a Killing tensor (KT)
or order two. By definition, @,, is redundant when it
may be written as a linear sum, with constant coeffi-
cients, of a multiple of the metric tensor and symme-
trized products of conformal Killing vectors (CKV’s). If
@, is a redundant KT, then it is a linear sum, with
constant coefficients, of the metric tensor and symme-
trized products of Killing vectors (KV’s). For the rest
of this paper, only second order KT's and CKT’s will
be discussed.

Equation (1.1) is the necessary and sufficient condi-
tion® for the scalar QQBP"PB to be a constant along the
null geodesic P%. If @, is zero, this scalar is a con-
stant along any geodesic, P* The main difference be-
tween a KT and CKT is that the latter are assumed
trace-free. since the trace does not contribute to the
scalar @ ., P*P® along a null geodesic.

Although CKT’s appear in the literature on separation
of variables for the Hamilton— Jacobi equation,® they
have only recently come into prominence in general rel-
ativity when Walker and Penrose showed that Carter’s®
KT for empty, nonradiating Type D spaces does not
generalize to all empty Type D spaces. Instead, the
natural object which appeared was a second order CKT.

In Sec. 2 we shall show that the linear vector space
formed from constant real sums of CKT’s is bounded
above. We closely follow the work of Hauser and
Malhiot? (hereafter referred to as HM), who derived
a similar result for KT’s. In Sec. 3 we consider spaces
admitting both CKV’s and CKT’s, while in Sec. 4 we
specialize {o four-dimensional reducible spaces with
two commuting KV’s. Throughout this paper we shall
assume that the dimension of our space is greater than
two.

2. THE VECTOR SPACE OF CKT’s

In this section we shall consider a CKT in an n-dimen-
sional Riemannian space. The following definitions:

L osr=28u1801 5 (2.1)
Maﬂrb=%(Laa[7;5]+L75[a;B]) ) (2.2)
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Huyp=Qroza (2.3)
Hogy=Hop;y » (2.4)
IaB=Q7;'r;(ot;B) ) (2.5)
20 4y = 3Q (4 L) » (2.6)
M oyg=M " (2.7)
M=M_*, (2.8)
together with
©%.=0, (2.9)
g%, =n, (2.10)
will enable us to deduce in flat space that
Liaprn=0. (2.11)
Hiogn=0, (2.12)
Moo =0, (2.13)
I%,=0, (2.14)

where @, and @, are defined in Eq. (1.1). Our immedi-
ate aim is to verify Eq. (2.14) (the other symmetries
are proved in HM), and then to derive the structural
equations® for second order CKT’s,

V,B=BA, (2.15)

where B is a row vector formed from the elements of
Qg L asys M ogyor Hopy Hougyr 1457 and the members of A are
concomitants of the metric tensor, Riemann tensor, and
and their finite covariant derivatives. Since Eq. (2.15)
is a tensor equation, it is sufficient to verify it in flat
space. Explicitly, we shall show that the first, second,
third, and fourth derivatives of @, are a linear sum of
the variables L 4, Mypy and Hyg, Hog,, and I 4, re-
spectively in flat space, when I ; is constant.

Assuming for now that 9 ,g;,=0, the following equa-
tions may be derived directly:

(2.16)
(2.17)

E Qosr=Lysm+Oasn
Laﬂ‘r, 8 =]Wa575+ 2675[8111} .
The integrability condition of Eg. (2.17),

M oy, = Ororanst, u Cruts, 01, 6 »

allows an expression to be found for the derivative of
M

aBybr

M oy py5, 0 = Mo pyis, w3 ¥ Maguts, v+ M epstn, v

= 6% ()ﬁ‘; O pwuw > (2.18)
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where 85% = 6% 65 — 6305%.

From Eqs. (2.9), (2.10), (2.1), and (1.1),

n+2)Q,=2L" , , (2.19)
while Eqgs. (2.17) and (2.19) imply
(+ 1)Q (o, =M g+ Mg op/m+2, (2.20)

and so the bivector components, @, g, are the first
derivatives of ¢, to be considered.

Because of Eq. (2. 17), it is necessary to discuss a
general second order derivative of @ , when inspecting
the third order derivatives of @,,. From the identity

Qa,5y= @ (a,am+ 3 (Qra,81r+ Qra,v8) » (2.21)

it suffices to show that @, ,,, is a linear sum of H ,, .
By operating on Eq. (2.17) withg®3,,

— [+ [+ 4
nQ 5,50 = 9% @860~ Qs Sow " a »

while the trace over 8 and § in this equation gives

2(n+ l)Q“,“a+ (n - Z)Q"‘,M‘=O, (2.22)
which, with the expression 2 H_,,=@%q, - @4, %,
allows us to write Eq. (2.21) as a linear sum of the H,

o By
3n

7Q5n =28 wsH v = 551y @ uafan - (2.23)

Consequently, the fourth order derivatives of @, are
spanned by terms of the form &, ,5,;- These expres-
sions may be written as a sum involving only the I,
which are defined in Eq. (2.5). This is verified by dif-
ferentiating Eq. (2.23) w.r.t. €, and antisymmetrizing
over the y and € components. Then operating on Eg.
(2.22) with g*%s, gives I,; as trace-free,

1%,=0,
From Egs. (2.23) and (2.22),
O=Q(C¥,B7’)uu =((2— n)n/Z(n+ 1))Q“) uofy ?

and so the I ,, components are constant in flat space
whenever n > 3, establishing Eq. (2.15). We shall now
drop the assumption above that the space is flat.

Theorem 1: Let R be a Riemannian space of dimen-
sion n, where n= 3. Then in R, the dimension of the
real vector space formed from trace-free, second
order conformal Killing tensors is at most N,, where
N,=n—1)n+2)n+3)n+4)/12.

Proof: The symmetries in Egs. (2.9) and (2.11)-(2.14)
imply that @ 5, L gy, Mapys, Hoygr Hygy , 1og contribute
20— 1) +2), 50— Dnfr+ 1),k - 1n*(n+ 1), 500 - D,
t-nmn+1),5(m-1)0+2) elements, respectively, to
the B in Eq. (2.15). Their sum is N,.

We have not proved Eq. (2.14) for a nonflat space, but
nonzero contributions can result only from the noncom-
mutivity of covariant differentiation, and so the trace
I*, will depend linearly on the other members of B.
Finally, the CKT, @, is a linear sum of the funda-
mental solutions of Eq. (2.15), proving Theorem 1.

Having established an upper bound for the number of
linearly independent CKT’s in a Riemannian space, we
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shall show that this is attained in flat space. The gen-
eral solution for a CKV, &%, in a space with constant
metric n* is

(2.24)

where £ 8 = (A% + ¢)n* ; and 4, Wap=Wiapy s Po, and
B, are real constants. The inner product, {*P,, of a

CKV and a null geodesic, P, ,is constant along P,.
From Eq. (2.24), the terms

1
E¥=A,x%x% — 3 A% 10+ 2% W, + ¢ x* + B,

PouLaB =x[o¢PB) ’ ¢=xaPa ’ ca=¢xa“Pax8x9 ’
(2.25)
are therefore constant along P,, and so the expressions
Pupa’ LuBLvﬁ 4 ¢2, CaCs » LaBPY ’

(2.26)
(z)Pa » caPB} ¢La8;

are second order CKT’s, and we shall show that N, of
them are linearly independent. The equations

L_.c oc,

af”r?

ﬂ”BPanO, LiwgPy1=0, LoyeLys=0, Ligecyy=0,

n*c,c,=0, ¢*=2n"Fc Py +20* "L, Ly,

2.27)
(bLaB:C[aPB] ’ ?‘C(aps):nyal’ar Ly, (
¢Po¢=nml‘aBP7 ’ ¢cm=77mLchr ’

split Eq. (2.26) into the five sets {P,P,},{L,P,},

{L 4oL ys, CraPsrt s L agCy b, 1c,Cst, and as these are di-

rectly analogous to the sets {@, F, 1M 4ay6) Hogl s 1Hogy ) »

{ID,B} which were mentioned in Theorem 1, there are at

most N, linearly independent members in Eq. (2.26).
The only relationship among the members of the set

{P,P,} is n**P,P,=0, which is given in Eq. (2.27).

To find the linear dependencies among the members of

the set {La“3 P,}, we shall consider the equation

A, x*PEP"=0, where A, ,=A,,, IS a constant tensor.
Then

Assy =Dg e+ Bollgy (2.28)
where D,,, and B, are constant tensors. Taking the

trace over o and B gives B,=D,,”, while symmetrizing
Eq. {(2.28) over « and 3 and taking the trace over 8 and
y gives (n+ 1)B,+D,,2=0, whence B, is zero, and 4 ,,
is antisymmetric in all of its indices. This restriction
is given in Eq. (2.27), and so there can be no more in-
dependent conditions on A ,4,. The sets {LaBLyb,c[aPB]}
and {L,,c,} are treated similarly. The final equation
is A 5¢c%’=0, where A ,=A 4 is a constant tensor.
We see that

n*n*" 8,0,8,9,(A,,c%P)=nn - 2)A,, P*P?,

e o “uy

and so forn=3, A,, =17,,, establishing

Theovem 2: Let F be a flat Riemannian space of di-
mension #, where n> 3. Then in F, the dimension of
the linear vector space formed from second order,
trace-free conformal Killing tensors is precisely (n - 1)
(n+2)(n+3)(n+4)/12.

Having shown that 84 linearly independent CKT’s are
possible in four dimensions, it is natural to enquire
precisely how many are present in a given four-di-
mensional Lorentzian space. An indication of the dif-
ficulty of this problem can be gauged from that en-

G.J. Weir 1783



countered with the integrability conditions for KV’s,
CKV’s,.and second order KT’s when it is necessary to
consider third, fourth, and fourth order derivatives,
respectively, of the basic variables. We must inspect
the sixth order derivatives of @,, when looking at the
integrability conditions for a CKT, and so this appears
an intractible problem with the techniques used so far.

3. SPACES WITH CKT’'s AND CKV's

In this section we shall derive canonical forms for the
metric and CKT in spaces which admit one nonredundant
CKT and either one or two commuting CKV’s. This task
is simplified by using some results of Nijenhuis.®

Let &%(M) be the space of gth order contravariant sym-
metric tensors. If P=@&® (M), Q= &* (M), we define

PNQ=Pl1r apQapntane (3.1)
[P,Q]=pP* (1" %pmip QU+ %pe’
—qQ°(OL T %1y, PYasl T Sqep) | (3.2)
These operations satisfy the following equations:
[P,[@,R])+[@,[R,P]]+[R,[P,Q]]=0, (3.3)
[P,@NR]=[P,Q]NR+QN[P,R], (3.4)
(V,Q]=8,Q, vee(), (3.5)
[G,Q]=2Q %" Qe&(M), (3.6)

where G is the metic tensor in contravariant form, and
P, @, and R are contravariant symmetric tensors.
From Eq. (3.6), a CKV, K, and aCKT, @, satisfy
[G,K]=¢G, [G,Q]=LNG, where pc&°(M), Le&S"(M).
KV’s and KT’s have ¢ and L respectively zero.

A. One CKV

We shall assume that the space allows one nonredun-
dant CKT, €, and one CKV, V,

[G,K]=9G, (3.7)

[G,Q}=LNG, (3.8)
and that any other CKT, é, may be written as

G=9G+aKNK+bQ, (3.9)

where a and b are constants, ¥ and ¢ belong to&°(M),
and Le®'(M). (If @ were redundant, b would be un-
necessary.) From Egs. (3.3) and (3.4),

[6,[Kk,@1=(K,L]1+[¢,Q1)NG,

and so [K, Q] is another CKT, implying from Eq. (3.9)
that [K,Q] =¢¥G+aKNK+bQ. The quantities ¥, a,b are
not invariant, however, and if we define

(3.10)

K'=cK, Q'=q@+pKNK+nG, 3.11)
then
[K,Q=¥'G+a’K'NK' +b' Q" (3.12)

where
r=c((K,n]+qy-n(d+b),
a'=(aq - bp)/c,
b'=bc,
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and ¢, g, p are constants, n=&°(M). Consequently, n can
always be chosen so that ¥/=0, and if b #0, we can set
b'=1, a’=0. If b=0, we may choose a’=0 or 1, and so
the canonical forms for [K, @] are (i) [K,Q]=Q; (ii)
[K,Q] =K K; (iii) [K,Q]=0. We shall choose K=K*“3,
=8,, whence

G=4G(x?,...,x"), [G,K]=~(5,10g¥)G ,
() Q=e"Q(2,...,a"),
(i) Q=xKNK+Q?,... x",
(iii) @ =Q(x%,...,x").

If Kand @ are KV’s and KT’s respectively, then the ¢
and 5 terms in Eq. (3.9) and Eq. (3.11) are constants,
and in general we cannot set ¥’ in Eq. (3.12) to zero.
The canonical forms are

K= 81’ G =G(x2y- . '7x") ’
Q:e"lé(xz,. LLx"), b=20,
Q:(alKﬂK+a2G)x1+é(x2,. ..,x"), b=0,

where a, and a, are constants.

B. Two commuting CKV's

We shall end this section by extending the previous
analysis to the case of one nonredundant CKT, €, and
two commuting CKV’s, K; (i=1,2),

[GsKi]:¢iG’ [G’Q]=LOG ’ [KisKj]=0,
[K;,Q]=9,G+a,Q +b%K NK,,

(3.13)
(3.14)

where ¥, =<&°(M) and a;,5,* are constants. From Eqs.
(3.13) and (3.3),

[x,, [k, Q))=[K,, [K,.Q1], (3.15)
and substituting Eq. (3.14) into Eq. (3.15),
K NK (b - a;b>) + ([Ky, 4] - [Ky, 9]

+ PP ra) - ¢(P,;+a))G=0. (3.16)

In spaces of dimension greater than two the coefficients
of K,NK, and G in Eq. (3.16) must both be zero, whence

bt=a,bst (3.17)
for some b [provided (a,,a,) # (0,0)] ,

(K, )= Ky, ¥5]+ 9Py + a) —¥(d,+a) =0,  (3.18)
while Eqgs. (3.3) and (3.13) imply

[Kis @) =K, 04] - (3.19)

We shall now derive the canonical forms for @ and G.
Under the transformation

Kp=cy 'K, Q=gqQ+p*K,NK,+nG, (3.20)
the coefficients in Eq. (3.14) become

Ypo=cpe’ (@i + [Kyy m]-nldy+ @),

an=cula, (3.21)

st i.s* 124 st st
b V= te e (g, - ap®),
it _ s
cilct ;=065

1

and so the integrability condition for ¢, =0 is K [K;, 7]
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=K1[Kj) 77], or

O:Kj(qui_n((b{"'ai)) —K¢((]¢j-—77(¢,+a,)) 3 (3.22)
where
ay; + [Ky,m] -n(; +a,)=0. (3.23)

However, Eq. (3.22) is satisfied because of Egs. (3.23),
(3.19), and (3.18), and so we shall transform ¥;,=0. If
(a,,a,) #(0,0), the transformation K, =¢,,'K; may be
used to set (a,,a,)=(1,0). From Eq. (3.17), we may set
5,5t to zero by choosing p%* =¢b% in Eq. (3.20), and so
X,,@] =9, [K,,Q@]=0 when (a,a,) #(0,0) .

The canonical forms are
K;=K"3,=06'0,,

Gze-ac(xa" . 7x") ’ [GyKi]=¢;iG ’

Q=e"Q(x%,...,x", (a,a,)#(0,0),
szibiSthnKt+é(x39"'7x")5 (01702):(0’0)'

Since we have not assumed that ¢,; is zero, these re-
sults hold when K; are both KV’s. This completes the
solution for the CKT. If @ is a KT, and K; are two
KV’s, we find as our canonical forms

[K,,Q]=@, [K,,Q]=0, (a},a,)#(0,0),
[Ki’Q]=wiG+biSthﬂKtr (al,az)z(0,0).

The author has not investigated CKT’s which depend
on the ignorable Killing coordinates. In the next section
we shall consider only CKT’s which are independent of
the ignorable coordinates.

4. CKT's IN QUASIDIAGONAL SPACES

A reducible space” is one for which the metric tensor
allows » commuting KV’s, 8,, and s nonignorable co-
ordinates, x%, to be chosen such that g*¥=0. A quasi-
diagonal space (qd for short) is a four-dimensional
reducible space with two commuting KV’s, i.e., »=2,
s=2. (The KV’s are 8, and 9,; a,b,---€{1,2};

9, B, -+ =1{3,4}.) Weshall briefly discuss reducible
spaces, and then specialize toqd spaces, assuming in
the future that the CKT is independent of the ignorable
coordinates, x¢,

-
gda=0’ ﬂaaQOLB:Oy
where o runs from 1 ton, andn=7+s.

From Eq. (1.2), the equations to be solved,

ga<baanb)_Qa(baagcb):Q(bgcrb)’ (4.1a)
g00a,Q? - Qab 5y g% = Qbge? (4.1b)
—QB6g, gt = @laghe) (4.22)
g%®22Q" ) @ bag g0 = §Qagb¢ (4.2)

split into two sets, since Egs. (4.1) involves only @%b,
@°®, and Q% while Egs. (4.2) involve only @*% and Q°,
Equations (4.1a) represents the generalsolution of a CKT
in an s-dimensional space, while from Eq. (3.7), Eq.
(4.2b) states that the » vectors, @*%3;, are CKV’s for
the s-dimensional metric tensor, g2b, These are CKV’s
for the whole space whenever —Q%%aag® = Q%?®, and so
the CKT Q%°8o®3,, is redundant whenever »=1, being
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the symmetrized product of a CKV, @°%8qa, and a KV,
3

o
We shall look for canonical forms for the pair
(g90,Q4b), by inspecting the eigenvalue equation

(@%5-r081y°=0.

If this_equation has distinct eigenvalues, then both Qab
and g“b can be diagonalized, but in general the mutually
orthogonal eigenvectors will not form coordinate sur-
faces, and so cannot be chosen as coordinates. This has
led in the past to technical difficulties which have only
been circumvented by imposing additional conditions®

on the eigenvectors of Eq. (4.3). Consequently, we shall
not consider the general case further, but restriet the
discussion to qd spaces. Then the eigenvectors can be
chosen as coordinates, and Eq. (4.3) can be subdivided
into the three cases when the eigenvalues are complex
(Case 1a), real and distinct (Case_1b), and degenerate
{Case 1c). The solution of the @°® components will be
denoted by Case 2. We ignore the case of Qub= 0, since
this leads to a redundant CKT.

(4.3)

Case la: ) a complex eigenvalue, y®, 7% eigenvectors

Let us use complex coordinates, z%, such that 67=y%,
63=y1. Then Q2 and gab are diagonal, and from Eq.
(4.1a),

@=g%0p, @=—g*oa,
g%a ,® 95, =(R,5,8 8,+X8,908,)/a+b,
Q%90 ,® 85, = (BR,8,® 9, — aX,0,® 8,)/a+D,
where
Q¥ =bg®, Q*=_ag",

and R, and X, are analytic functions of 2% and 24, re-

spectively. The reality of G and @ imply that X, =R,
b=d. We have assumed that a+b #0, otherwise
Q=bG+v K NK +v,K, NK,+v.,K,NK,, (4.4)

where b is a real function of 2% and 2%, v, 7,, and 7,
are real constants, and K, and K, are the KV’s 9, and

8, ,respectively. This is a redundant CKT. If @ is a KT,
then b is a real constant, and again a+5=0 leads to a
redundant KT. Ignoring the possibility that a+b=0, we
find from Eq. (4.1b),

9,(Q-0g®) =0, 8,(Q%+ag*)=0,
and so
G=g%9.,® 8,,
=((c,+d,)8,® 8 +2(e;+f)0,® 3,
+ (83 +h)8,®9,+R 8,8 08,+X,0,80,)/a+b,
Q=Qaﬂa(a®3s)
=((bey - ady) 3,00, + 2(be, — af,)o ,® 8,
+(bgy— ah,)9,® 8,4+ bR, 8,88, — aX,8,® 3,))/a+b, (4.6)
Q¥=g%00, @Q*=-g*4a, 4.7

where R,, c,, €,, g, and X, d,, f,, h, are analytic func-
tions of 2% and 2* respectively, and b=a, X,=E,, d =z,
fi=;, hy=F,. IfQ is a KT, then a and b are analytic

(4.5)
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functions of 23 and z?, respectively, and there is es-
sentially no difference between the given KT and the
metric, since the KT in Eq. (4.6) may be written in the
form of the metric in Eq. (4.5) by an obvious redefin-
ition of the functions a,b,c,,d,,e,,f,,R,,X,, and inter-
changing the Killing vectors. In fact the symmetric
form of G and @ in Eq. (1.1) when @, is zero shows that
if @ is regarded as the metric, then G is its KT.

The metric in Eq. (4.5) may be written in terms of
real coordinates by defining z%=x%+ix*, where x® and
x* are real. Then

G=(A3,® 8, +2B8, D0, +(0,20,+D3,00,
+2E3,®8,, - D8,93,)/V,

where A, B,C, D, E are real harmonic functions of x*
and x*, and ¥ is harmonic iff the CKT is a KT. The
corresponding @ in Eq. (4.5) is pure imaginary, but as
any CKT is only defined up to a multiplicative constant,
we can always make @ real.

Case 1b: Two real eigenvalues

Let us choose our coordinates so that the linearly in-~
dependent eigenvectors are 658, and 658,. Then g1b
and Q%0 are diagonal, and the preceding analysis of
Case la applies, so that the metric and CKT are given
in Eq. (4.5) and Eq. (4.8), respectively, but now R,
Cqyy€4,8,, and X, d,, f,,h, are (not necessarily analytic)
real functions of x® and x*, respectively.

Case Ic: A single eigenvalue

Nonredundant CKT’s exist only if signature (g%b)=0,
and so we shall choose as our nonignorable coordinates
the two real null directions for g40. Then the condition
for a single eigenvalue is @ **@**=0, and without loss of
generality we take @*=0. If @* is zero also, we have
the redundant solution of Eq. (4.4), and so we shall as-
sume that @** is nonzero. Our canonical forms are

0 g34 O QS‘l
gab: g34 0 3 Qﬂb= Q34 Q44 ’ QLM;‘t 01

and the coordinate freedom is x%' =x3"(x%), x*(x?). From
Eq. (4.1a), 9,@*=0, and so the coordinate transforma-
tion x* =x* (x4 will be used to set @**=+1. The com-
plete solution for the metric and CKT is

G={(x9,e,%+f,")0, 28,
+2Q%9 ,©8,)/(b - x*0,0a),
Q=aG+el’d Da,+Q*8,3 8,

where @%=ag®, b=x%,a+(Q%/g%), and ¢,° and f,* are
functions of x3, @*=x1, and @ is a KT iff @ and b are
functions of x%,

Case 2: The @°% components

If the determinant of Q°® is zero, then @%=7Q** for some £,
and either f is constant, in which case a linear trans-
formation among the KV’s will set @'® to zero (and so
@ is redundant), or f is nonconstant. This is only pos-
sible when @°%9; are both null, but then Eq. (4.2a) im-
plies that g** is zero, or f is constant. Consequently,
we assume that det(Q°%) #0.
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Specialized solutions of Eq. (4.2) may be found, for
example

G=d(a(x*)?+2cx*+d)a, 00,

— 2ax®x 4 bxtycx341)8 D 8y

+(a(x®)? +205% +€) 8,88,y + G, o Doy,
Qi=-8,logd, Q*=-23,logd,

where GO“b is a constant matrix, a,b,c,d,e,f are con-
stants, and ¢ is an arbitrary function of ¥® and x*.
However, the author was unable to solve Eq. (4.2a)
completely, and so we shall not discuss the @%¢ com-
ponents further,

We end this section by solving the null geodesic equa-
tions in spaces defined by Eq. (4.5). If the correspond-
ing € is a KT, the discussion applies to all geodesics.
For this metric there are four independent first in-
tegrals,

leéixPa H L2= 620‘Pat ’ LszgaBPaPB ’ L4=QaBPo¢PB *
where P*=dx*/dx is a null geodesic with affine param-
eter A, and L,,L,,L,, L, are constant along P*. From
Eqgs. (4.5) and (4.6),

R,P?=al,-c,L,*~2¢,L L,-g,L>2+L,,

X,P?=bL,-d,L*-2f{ L L,-hL}*-1,,
and so when @ is a CKT (L,=0), or a KT [a=a(3),
b=0(4)], we see that P, and P, are functions of x* and

x*, respectively. This allows the null geodesic equa-
tions to be solved by quadrature,®

dx*/R,P,=dx*/X P,

dxt = (L,c + Loe)dx® 'R, Py+ (Lyd,+ L, f)dx* /X, P, ,
dx?=(L,e,+L,g,)dx* 'R,Py+ (L fy+ Lok )dx*/X, P,
dx=adx*/R P, +bdx*'X,P,, (4.8)

and we still have the coordinate freedom x3':x3'(x3),
% =x?(x%), and a linear transformation among the Killing
vectors, which may simplify Eqs. (4.8).

An example of such a space is the solution (belonging
to Case 1b) of Plebanski and Demianski for the charged
Kinnersley metric with a cosmological constant

a=2p2/ (1=~ pg)?, b=2¢*/(1-pq)?,
c,==p*g(p), di=q"/hig),
e,==p*/g(p), fi==4°/h{q),
gy=-1/g(p), hy=1/h(q),

a=p,

where g and & are certain real quartic functions
the real variables p and ¢, respectively. If the perfect
square condition, ¢,g,=e.;?, d,hi,=/, holds for the Case
1b metric of Eq. (4.5), and Ry, X,,¢,,€,,8,, —=dy,~f4, —H4
are positive on some coordinate patch, with g, and 2,
being nonzero, then Eq. (4.5) may be written as

xt=q,

10=13 Of

ds® = (a+b)((m,/py+ g ) (dxt + q,dx*)?
= (Vo/Dy+ 4 ,) (dx* — pydx®)?

+ (@x* VR, )2+ (A VX,)?), (4.9)

G.J. Weir 1786



where mlg,=1, n’h,=1, p’g,=c,, ¢ 2h,=d,. The two
real null vectors

(£) 75 (rm) e
4

are geodesic and shear free, and so the empty space
subclass of Eq. (4.9) are the Type D metrics. The cor-
responding CKT is that found by Walker and Penrose.

CONCLUSION

We have shown that two second order, trace-free
symmetric tensors, two third order tensors (satisfying
L (4pyy=0=L,s,), a bivector, and a tensor with the
Riemann symmetries arise in a derivation of the struc-
tural equations for CKT’s. An analysis of their first
integrability conditions, which result from identities
among the sixth order derivatives of ,,, seemed im-
practical and so additional restrictions were imposed.

We assumed that the space was quasidiagonal and that
the CKT was independent of the ignorable Killing co-
ordinates. The complete solution for the metric was
given when the CKT is also gd and the subclass con-
taining the empty Type D spaces discussed.

A different approach was adopted recently by Hauser
and Malhiot'* who showed that the existence of a certain
canonical form for the Killing tensor is sufficient to
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impose a two-dimensional, Abelian symmetry group on
the space. A similar result was found by Sommers.!s
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Maxwell’s equations in an expanding universe*

S. Malin

Department of Physics and Astronomy, Colgate University, Hamilton, New York 13346

(Received 19 August 1976)

Schrédinger’s classical solutions of Maxwell’s equations in an expanding universe with positive spatial

curvature are reformulated in terms of group theory. Euler angles are used as coordinates in spherical
space; the equations satisfied by the components of the complex electromagnetic field tensor are then given
in terms of Euler angles. It is shown that if the fundamental modes of the electromagnetic field are
appropriately chosen, certain components of the tensor are given by matrix elements of the irreducible

representations of the group SU(2).

I. INTRODUCTION

The problem of finding the fundamental modes of the
electromagnetic field in an expanding universe with
positive spatial curvature was first solved by
Schriidinger,1 using analytical methods. In the present
work the problem is formulated and solved using group
theoretical methods. The expression of the fundamental
modes of the electromagnetic field in group theoretical
terms is of intrinsic interest; we also find that some
derivations are considerably simplified.

An additional motivation for the present work stems
from considering the quantization of the electromag-
netic field in curved space—time. In the case of flat
space—time, an analysis of Maxwell’s equations based
on the group SU(2) led to an elegant method of gauge-
free quantization.? The present work is also based on
the group SU(2) and may lead to a similar quantization
formalism for homogeneous, spatially isotropic curved
space—times.

Section II contains the group theoretical framework
of the present approach, It is based on the observation
that spherical space of radius unity is also the space
of the group SU(2); Euler angles can be used, therefore,
as coordinates in the space. By using a well-known
completeness theorem, all square-integrable guantities
defined over the space can be uniquely expanded in
terms of the matrix elements of the irreducible repre-
sentations of the group SU(2).

Schrdédinger’s formulation of Maxwell’s equations in
an expanding universe with positive spatial curvature is
briefly summarized in Sec. II, and some of the results
are stated. He uses cylindrical coordinates in spherical
space, which are related to Euler angles by simple
linear transformations.

The group analysis is given in Sec. IV. The compo-
nents of the complex electromagnetic field tensor and
the equations they satisfy are transformed from
cylindrical to Euler angles coordinates. A complete
solution of these equations is derived in terms of the
matrix elements T],(u), # < SU(2), of the irreducible
representation of the group SU(2). It is shown that if
the fundamental modes are appropriately chosen, some
of the tensor components are simply given by
[S)]'T] (u) where ¢ is the cosmic time and S() is the
Robertson—Walker expansion function.

1788  Journal of Mathematical Physics, Vol. 18, No. 9, September 1977

I1. SPHERICAL SPACE AND THE GROUP SU (2)

If the universe is assumed to be isotropic, spatially
homogeneous, and contains a congruence of fundamental
world lines which fills the whole of space—time, then it
is possible to choose a canonical coordinate system
(t, x4, x9,x5) such that the metric tensor in the coordi-
nate system is of the form?

dx? +dxd + dx}

2 __ 452 o2

ds® =dt* -8 (t)——rl—ﬂﬁ(1+qk7) s (2.1)
where

v=(] +af + 2/ (2.2)

and on the fundamental world lines ds® =di?. The co-
ordinate ¢ in the canonical frame of reference is called
“cosmic time.”

The isotropic, spatially homogeneous cosmological
models are classified into the following three well-
known types:

(1) #=+1 {spherical space). The hypersurfaces I
= const have constant positive curvature,

(ii) #=0 (Euclidean space). The hypersurfaces k
= const have zero curvature.

(iii) k= - 1 {pseudospherical space). The hypersur-
faces t = const have constant negative curvature.

The present paper deals with the case of spherical
space. Following Schrodinger’s notation, ! let ' =w,
x%=¢, x* =1 be cylindrical coordinates in spherical
space, having the range 0<¢, ¢ <27 and 0 s w <.

The possibility of applying group theoretical methods
to the analysis of equations in spherical space arises
through the following observation: Spherical space with
curvature unity is also the space of the group SU(2),
and, if the following transformation of coordinates is
employed,

Rlma=a(¢p+y), F’=y=:(6-1),

(2.3)

— 1
x'=B=31w,

then &, 3,7 are the Euler angles, which are the most
commonly used parameters of the group SU(2).4

Since the matrix elements T};q(u) of all the irreducible
representations of the group SU(2) form a complete
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orthogonal set over the group, any function F{u), u
€ 8U(2), which satisfies

f IF(u)|2du<°°,

where du=(1/16)7"? sinBda dBdy is the invariant mea-
sure over SU(2), normalized so that [du=1, can be
uniquely expanded in the T} (u):

j 5
Fu)=2 20 25 al, Ti,(u).

(2.4)

(2.5)
J p==j q=-f
The coefficients are given by
ale=(25 +1) [ fl)T{¥(w) du, (2.6)
where Ti¥ is the complex conjugate of Tj,. Equation

(2. 6) follows from the orthogonality relations of the
T ():

J Thtt

The T],(u) satisty the equation®

’" Fwdu=(2j + 1)1 7 Oppt Bggt « 2.7

92 1 <32 32 3?2
[——BT tBGB sin’ 8_0424_8_)/2 2cosBaaay>

]+1] se(@,B,7)=0
They can be expressed in the form
Tj.(a, B,v) =explipa)d;(B) expligy),
where d;,(8)=

d d p2+q — 2pq cosB
[@+cotﬁ 57123

Xd(8) =0.

7.(0,8,0) satisfies the equation

j(j+1)]

(2.10)

M. MAXWELL’S EQUATIONS IN SPHERICAL
SPACE-TIME

Let the electromagnetic field tensor be defined in

locally Minkowskian coordinates by
¢" =E;, ¢'=éB,, ¢°F=- ¢, (3.1)

where E;, B,, are the usual electric and magnetic field
components: Latin indices take the values 1, 2,3, Greek
indices take the values 0, 1, 2, 3, and €/* is the totally
symmetric Levi-Civita symbol with €!?* =1. As usual,
let the covariant components of ¢*® be given by ¢,,

=Zuafus ®*°, and let Gop=35V—geap,, ¢** be the dual
tensor of ¢,5. Let

FaBE ¢a6 +i¢a87

be the complex electromagnetic field tensor. ¢

(3.2)

Maxwell’s equations in curved space—time can now
be expressed in the form

x” ox x (3.3)

and the following results were obtained by
Schridinger!:

(i) Fy3, F3y, and Fy, can be expressed in terms of
FIZ? F13, F14 as follows:

F23 =S sinw COSCUF14, F31 =18 COt(J)Fu,

FlZ :iStanngl.
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S =8 (t) is the expansion function (see Sec. II).

(ii) In terms of a new variable 7= [*dt/S(f) the F,, can
be written in the form

Fo=S"expli(vt +n¢ +md) ] fulw), (3.5)

where v, n, m are integers and v = 2, A fairly complex
set of relationships between the allowed values of
v, n, m was derived. These will not be reproduced
here; the group approach yields equivalent relationships
rather simply (see Sec. IV).
{iii) fi4 can be expressed in terms of f,,, f3; by the

equation

vsinw Coswf14:inf34—i7nf24, (3.6)

and fy,, f34 satisfy the equations

af

vsinw coswai4 Funtfay = 11 fay + VP COSNWf =0,
dfyy (3.7)
vsinw cosw=rBl — mnfy +1%fy — V2 sinwfy, =0,
If f, g are now defined as
f=Fautfou, &= —fas (3.8)
then the following equations are obtained:
2vsinw coswj—ﬁ + (n? — m? + v cos’w - V¥ sinfw) f
+ (2 +mt—nt - V) g =0,
(3.9)

2 2

2vsmwcoswd—g+(2mn m?—nt = V) f

dt

+ (m® +n® = v cosPw + ¥ sinfw)g = 0.

IV. GROUP ANALYSIS

Transformation of the tensor F,, from cylindrical
coordinates x* to Euler angle coordinates ¥ yields

Fy =2F, Fp=Fy+Fy, Fy=Fy-Fg,

= — = 4.1
Fiu=2(Fy +Fy3), Fyy==2Fy, F31:—2(F12+F31)-( )

Because of Eqs. (3.5) and (3. 8) we obtain the following
form for F,, Fy,:

FOZ -:S-1 eXp[i(VS +f)a +CI'Y)]f(B),

Fyy=S" expli(vt +pa +qv)g(8), @2
where
p=z(m+n), q=3(m=-n). (4.3)

The set of equations satisfied by f and g is obtained by
applying the transformation (2. 3) to Eqs. (3.9). The
calculation yields

2v Slan]; + (v cosB - 4pq)f + (4p* - v1)g =0,
(4. 4)
2v sdeB (4pg — vV cosPlg — (49"~ v¥)f =0.

By eliminating f(B) from Eqs. (4.4), the following
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equation is obtained for g(B):

dzg

¥rid +cotB + @t +iv)g

+q2~2
P q PqCOSBg

e 0, (4.5)

and f(B) is given in terms of g(B8) by the equation

£8) = 2v s1ang/dB+(4pq— v: cosBlg

4q _ V2 (4- 6)
Alternatively, by eliminating g(8), one obtains
da’f a . 1
W +cotp dB -zv)f
p +q° —-2MCOSB _
Sin’B f=0, 4.7
and g(B) is given in terms of f(B) by
o(8) = 2v sinfdf/dg + (v cosB — 4pq)f _ 4.8)
12— 4p?
If the functions F, and F_ are now defined as
F,(a,B,v)=expli{ pa +q7)]f(8),
(4.9)

F_(a,B,y)=expli(pa +qv)]g(B),

it follows from Eqs. (4.5) and (4. 7) that they satisfy

[az+ tB~+( Fiv) + !
8*'6‘2' coO .1V al/ m

82 82 82
X _
<aa2+7_7 2cosB2 5 )]F*(oz,ﬁ,'y)_o (4.10)
Since the functions F,(a, 8,y) and F_(«, B,v) are de-
fined over the space of the group SU(2), they can be
uniquely expanded according to Eq. (2.5). If we now
substitute these expansions in Eqs. (4.10) and denote

L - if =
j+:{21/ 1 itv=0, (4.11)
—%V if U<O)
and
1 fve
j_:{zu if v 0, (4.12)
-zv=1 ifv<0
then in all cases
WiFEv=i(i +1), 7., 5.0, (4.13)

and the following conclusions follow from Eq. {(2.10)
and (4.5)—(4.8):

(i) Solutions of Eqs. (4.10) exist only for j,, j., p, ¢
integer or half-integer; v is, therefore, a (positive or
negative) integer. Since v is real, it follows from Eq.
(4.12) that vl =2, If v is odd, j., j., p, q are all half-
integers; if v is even, they are all integers.

(ii) Let v be positive, and consider Eqs. (4.5), (4.6).
Because of Eq. (2.6), lgl=%v=j. is excluded; there
are V¥ — 1 solutions’ of the form®

o, 8,7) —apq Tj-(a B8,7),
where a;'; are arbitrary constants and the allowed values

of p,gare p=-2j_ -1, ~2j_,...,2j.+1, ¢q
==2j_,...,2f_.

(4.14)
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(iii) Let v be negative and apply similar considera-
tions to Eqs. (4.7), {4.8). One obtains again v*~ 1 solu-
tions; they are

F.(a,B,y)=

with j, =— nv apa arbitrary constants and p, ¢ having
the allowed values p=-2j,,...,2j,, ¢=-2j,-1,
~24y e, 2+ 1.

ajiTi(a, B,y), (4.15)

It follows now from Eqs. (3.5), (4.14), and {4.15)
that all the fundamental modes of the electromagnetic
field in spherical space can be described as follows:
Corresponding to every positive integer v satisfying v
= 2 there are v*— 1 modes given by

Fyyla, By, ) =[SO Ty e, B,7),

with the corresponding Fyy{a, 8,7,t) determined by Eqgs.
(4.8) and (3.5); and corresponding to every negative
integer satisfying v <~ 2 there are v>— 1 modes given by

Fola,B,y, =[SO T;5 e, B,7), (4.17)

with the corresponding Fqy(a, 8,7,1) given by Eqs. (4.8)
and (3.5). For all allowed values of v, once F,; and

F3, are given, the other components of the tensor F,,
are determined by Eqgs. (3.4)—(3.6).

{4.16)

It follows, therefore, that for any given electromag-
netic field in spherical space-time the expansion of
Fq (for v=2) or Fyy (for v <—2) in terms of the matrix
elements of the irreducible representations of the
group SU(2) can be physically interpreted as an expan-
sion in terms of the fundamental modes of the field.
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It is shown how the requirement that the Gibbs’ ensemble average <A)> = Tr(e °4)/TrA,

b =—-(1/2)kT, of any physical quantity A4 be formally expressible as an expectation value
(Pb|A|bP)/(Pb|bP) over a thermodynamic state |Pb), naturally leads to the realization of (Pb|,

as a cross section of a fibre bundle 8(G) with fibre G, over a manifold M of pressure states P as base
space, where G is the infinite-dimensional Lie group {exp(Hb +u,P.); —« < b, 4, < « | generated by H
(Hamiltonian) and {P,; n = 1,2,-}, the sequence of projectors on the eigenvector subspaces of H.

The group G is thus partly parametrized by the temperature variable b.

1. INTRODUCTION

The recent attempt of Takahashi and Umezawa! to
formulate quantum statistical mechanics at finite tem-
peratures in the form of a quantum field theory with a
temperature-dependent “vacuum” raises some issues
regarding the true mathematical structure of the object
[P, T), which can be said to represent the state of sys-
tem in thermodynamic equilibrium.

In the paper of Takahashi and Umezawa, a so-called
temperature-dependent vacuum is constructed in the
form

|B) =Z7/%(8)2 exp(~ BE,/2) |n, ),

where Z is the partition function, 8=1/kT, and |n,%)
is the direct product of two kets 1#), 1%), which them-
selves are defined by the two eigenvalue equations

H|n>:E"|n),
H|n)=E,|n),

the former equation referring to the real physical sys-
tem, and the latter to an analogous fictitious system
whose Hamiltonian H is supposed to have the same
spectrum as the actual Hamiltonian, H. With the aid
of this construction, the authors then proceeded to
construct Fock operators and other related quantities.

The above construction for |8) arose from the
requirement that the statistical average of a quantity
A, over the canonical ensemble at temperature T,

viz, ,

(Ay=tr(de®H)/Z,
B=1/kT,
Z=tr(e®¥),
be expressible as an expectation value
(A)y=(BlA|B)/(B|B),

where |3) is a suitable temperature-dependent state,
The main object of this article is to demonstrate that,
keeping the last-mentioned prescription in mind, one
can elucidate the precise mathematical nature of the
(P, T) states of a system in equilibrium. We shall
henceforth call such states thermodynamic states, and
denote them by (P,b |, where P is pressure, T is
temperature, and b= - 1/2kT.

The laws of thermodynamics provide a direct mathe-
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matical relationship between the finely structured (i. e.
detailed) microscopic states on the one hand, and the
much coarser space of thermodynamic states (2,51,
on the other hand. The relationship is provided by the
above-mentioned averaging process, which we shall
show is tantamount to the canonical projection of the
manifold of microscopic states, viewed as the ftotal
space of a fibre-bundle, on the manifold M of pressure
states (P) taken as the base space.

2. THERMODYNAMIC STATES

A nonmagnetic physical syster in thermodynamic
equilibrium is describable in terms of the pairs of
variables: (P, T) (T,V), (V,S), or (S,P), with corre-
sponding potential functions G (Gibbs’ potential), F
(free energy), U (internal energy), and H (enthalpy),
respectively, where P is pressure, 7', Kelvin tempera-
ture, V, volume and S, entropy. The pair that is chosen
determines the potential that is minimized at equilib-
rium. We shall in this article choose the pair (P, T).
Furthermore, we shall allow for the fact that (meta-
stable) quantum electronic systems can be shown to
exhibit (formal) thermodynamic properties with temper -
ature values in the negative range® of the temperature
scale. Thus we shall use as the temperature parameter

b=-1/2pT,

where % is the Boltzmann constant, and -« <j <,
Suppose the physical system C is described by a
Hamiltonian H(C). Let H(C) have a spectrum E_(C) de-
fined by the eigenvalue equation

H(C)|n)=E (C)|n),

where the eigenvectors |n) are complete and orthonor-
mal. The significance of the system parameter C written
explicitly in E (C) is that since b can be positive, the
partition function

Z =tre?Ht

may be infinite unless we ensure that the upper bound of
E (C) is finite for systems C corresponding to positive
values of . Thus the system parameter C will have
essentially two values, which we denote as + and —.
Cis + if and only if b= 0 (e.g., for metastable quantum
electronic systems) and C is - if »< 0, i.e., for normal
physical systems. The set {E _(-)} need not have an
upper bound, but {E _(+)} must have an upper bound.

With this proviso on the boundedness of the spectrum
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of H, we shall assume that b takes arbitrary values on
the entire real line. We shall also drop explicit men-
tion of the system parameter C.

3. BUNDLE OF LINEAR FRAMES

Let M denote the positive real line defined by the
pressure states P> 0. M is a differentiable manifold.®
At each point of M, i.e., for each pressure value, P,
let L(a,P) denote the ordered set {(n,pla,: n=1,2,...}
of eigenvectors of H (acting from the right),

(n,Pla,H={n,P|a,E,,

where {an} is any sequence of real numbers for which
the series $7_, o’ converges. L(a, P) will be called a
linear frame at P, and will be represented as a row
matrix with nth entry (u, Pla,. The frame L{a, P) spans,
i.e., is basis for, the Hilbert space at P, which we
denote by E,. Now let L(M) be the set of all such linear
frames at all points P of M, i.e., L(M) is a product
space consisting of pairs (P,L(a,P)). Let GL(E,) denote
the group of automorphisms of E,. GL(EP) is the infinite
general linear group with real entries. Let [1 be the
mapping of L(M) onto M which maps a linear frame at
P into P,

I:L(a,P)—P.

The group GL(EP) acts on L(M) on the right as follows:
If L(a,P) is a linear frame at P, and Ac GL(E,), then
L{a’,P)=L(a, P)A is also a linear frame at P, where
L{a’, P) is the row matrix with nth entry § (mla,A4 .
This action of GL(E,) on L(M) is effective in that only
the identity element of GL(E’) leaves any point of Z{M)
fixed. Thus the triplet £ = (L(M),11,M) is a principal
GL(EP)-bundle which we may call the bundle of frames
over M.*

We shall now consider the subgroup K of GL(EP) con-
sisting of diagonal matrices, k, with real entries
k,, n=1,2,---_ In general, k would be semi-infinite
in dimension and we must impose the condition that
the series 37, ki converges. The group K acts effective-
ly on L(M) from the right, K : L(M)—~ L(M). It thus
defines the subbundle ¢ =(L(M), I1,K) as a reduced
bundle. [We note that it is not required that X be a
closed subgroup of GL(E’), which it is not, since the
diagonal entries are not equal.] ¢ will be called a
principal K-bundle and denoted by ¢(K). The space M
is isomorphic with the quotient space of L(M) by the
equivalence relation induced by K : M=~L(M)/K.

The elements of M are in one-to-one correspondence
with the sets of equivalent row matrices L(a,P) with
nth entries (n, Pla,, two such matrices L(a,P),
L{a’, P) being equivalent if they are connected to each
other by a right action of some 2 < K. Since all the row
matrices for a given P are so related, we see that the
mapping [1 defined earlier coincides with the canonical
map

11:L M)~ L{M)/K.

This map associates each K-equivalence class in L (M)
with a point P of M. From this right action of K on
L(M), we may also obtain a representation % — exp(k P,)
of K as a Lie group of transformations of L{M) at P,
where g, is real and P, is the projection opevator onto
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the eigenvector subspace corresponding tothe eigenvalue
E_ of the Hamiltonian H. This representation of K will
be useful later.

For each value of pressure Pc M, the space [I"Y(P)
is the fibre over P. Each point y of II"P) is called a
cross section and is representable by the graph
(P,g(y)), where g(y) is the element of X with the aid of
which y is reached by right translation from some
fixed row vector L(a,, P).

4. THE BUNDLE OF THERMODYNAMIC STATES
Now let us consider again the eigenvalue equation
H|n) = |WE ,
where
(m|my=5_,.
We also put
H:E{IHP",

n

where ¢, are real numbers subject only to the condition
that 37 ; ¢ converges, and P_ is, as before, the projec-
tion operator onto the eigenvector subspace correspond-
ing to the eigenvalue E of H. It follows that

[H,P ]=0.

Also since P P =0 for m#n, we have
[P, P,]=0

for all m, n.

Furthermore H and {Pﬂ} are generators of an infinite-
dimensional Lie group G, whose elements ¢ are given
by

g=e*;

X=bH+uP,

where h = —1/2kT, and u_ are real numbers subject to
the Hilbert space convergence condition imposed earlier.
The Einstetn summation convention ovey repeated in-
dices is also assumed.

The group K acts on G from the left according to

kg=e"e G,

W=bH+(u,+k)P,

where gc G, and k=explk_p,)c K. We have here used
the representation

k—explk P )

of K as a Lie group of transformations on the space of
{L(a, P)}. Now, associated with the principal K-bundle
¢ is a fibre bundle 8(G) constructed as follows: We
consider the left action of K on the Lie group G as given
above, For every ke K, x< L(M), geG, the relation

kilx,g)={x, 0k = (xk,k'g)
defines a (right) K-structure on L(M)XG.
Furthermore, the map

FLMXG) = L(M)G=9,
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under which the action of K on (L (M) xG) goes to the
quotient, defines the quotient space

8 =((L(M) xG)K)
which is isomorphic with (L(M)*G) modXk.

Let 11, : 8 ~ M be the factorization of the composition

H‘, n
LOMDXG—~LM)—~M

by the projection f:{(L(M)*xG)— 8, so that the following
diagram is commutative:

T,
LM)~ L(M)XG

bl

Ty

M «—9¢
6 =6(G) is the fibre bundle over M with fibye G (viewed
as a K-module) and associated principal K bundle ¢.
The group K is the structure group of the fibre bundle
6. For every point P< M, the fibre II;'(P) is a space
homebémorphic with G. It has as points the objects
(P,b,k)=L(1,P)eX; X=bH+ P,, where L(1,P) is the
row matrix with nth entry (P,nl, so that (P,b,k) is a
row matrix with nth entry (P, nlexp(®E, +£,), &, being
arbitrary real numbers subject only to the already stated
convergence conditions. The objects (P,b,k) are the
cross sections of the fibre. They are parametrized by
real numbers {»,k ,n=1,2,-..}. The family of sections
for which g, =0 for all » are denoted by (P,5!, and are
precisely the thermodynamic states needed to express
the average of any physical quantity in the form

(Ay=(P,b|A|b,P)/(P,b|b,P).

5. CONCLUSION

We have shown that the requirement that the Gibbs
expression for the statistical average of a physical quan-
tity in the canonical ensemble be written as an expecta-
tion value between thermodynamic states |5, P) naturally
leads to (P, ! being realized as a cross section of a
fibre bundle 8, with siandard fibre G, where G is the in-
finite-dimensional Lie group generated by the Hamilton-
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ian H and the infinite sequence of projection operators
P_ onto the eigenvector subspace corresponding to the
eigenvalue E, of H. The base space M of this bundle

is the positive half-line P> 0, where P is the pressure
of the system. If II; denotes the mapping from 6 onto

M, and if Pe M, then the fibre I1;'(P) of which (P,b!

is a cross section, is homeomorphic to the group G,
which does not have a vector space structure. The
space of the thermodynamic states (P,b| is therefore
not a vector space. This is in agreement with the super-
selection rule according to which no temperature state
can be obtained as a linear superposition of two or more
temperature states.

Referring to the paper of Takahashi and Umezawa, '’
which motivated this work, one can see that their
fictitious operator H is very much akin to our direct
sum H=Y q P, of projection operators, and these
latter are by no means fictitious. Having obtained the
states as sections of a fibre bundle, it is a straight-
forward matter to reglize the relationship between one
(P, T) state and another in terms of the usual morphisms
of the fibre bundle.®
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On the blowing up of solutions to the Cauchy problem
for nonlinear Schrodinger equations*
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Solutions to the Cauchy problem for the equation fu, = Au + F(u|*)u (xeR", > 0), u(x,0) = ¢(x),
are considered. Conditions on ¢ and F are given so that, for solutions with nonpositive energy, the

following obtains: There exists a finite time T, estimable from above, such that

llgradu(t) ”L’(R”) >+ 00

as {-—T ~. It is also shown that other L -norms of a solution (including ¢ = o) blow up in finite time.

INTRODUCTION
Consider the Cauchy problem for the equation

iu,=Au+glul*tu, xcR", t>0

ulx,0) = @(x). ()
Here g>0, p>1, and ¢ is assumed to be smooth and
small at infinity., We investigate conditions under which
solutions to (1) (and to equations with more general
nonlinearities) may blow up in finite time. To motivate
the result, we consider the problem of finding an «a

priori bound on the H,(IR") norm of a solution, As is
well known, a sufficiently regular solution satisfies

) |lo= (fgn el 1) [2ax)t/?

=const= [ @], (2
and
R

We estimate the norm |lu(t)ll,,, appearing here by the
Sobolev inequality’ and obtain (assuming p +1<2n/(n ~ 2)
if n = 3, p arbitrary for n=1,2)

2l

) ,., < const (1)

l1-6

5

i.e., for 8=n(p=-1)/2(p +1). Since |lu(t)ll, is uniformly
bounded by (2), this gives the estimate

[l (1) ||::i < const || Vae(s) {fzle-1/2,

Then, assuming | E,| <=, we find from (3) the
inequality

NN

E,| + gconst| vu()|ze-t/2,

Clearly an uniform bound on ||vu(#)l|, results, provided
(n/2)(p - 1)< 2; that is, provided p <1 +4/n. For larger
values of p, such a bound could still be obtained under

a “smaliness condition” (e.g., if ¢ were sufficiently
small); however, the global existence of “large” solu-
tions would then be in doubt. Indeed, our blow-up
theorem, as applied to this case, gives a class of initial
values ¢ for which the norm |jvu(t)il, of a solution u to
(1) blows up in finite time, provided E,<0 and
p>1+4/n.

Straugs?'® has shown that “small” solutions to (1)

1794  Journal of Mathematical Physics, Vol. 18, No. 9, September 1977

(regardless of the sign of g) exist globally and decay as
t -, provided p is sufficiently large. When n=23 and

£ <0, Lin* has determined the asymptotic behavior of
“large” solutions to (1) for 3<p<5. When n=1 and
g>0, (1) possesses solitary wave solutions.?'®® In fact,
a special consequence of the procedure in Ref. 5 is
global existence for (1) in the case n=1, p=3.

In the past few years a dramatic increase of interest
in such blow-up results has occurred. However, none
of the presently known methods seems to apply to
Schrodinger-type equations. We include in the biblio-
graphy a representative (but not complete) list of known
results (cf. Refs. 6—21). Of course for solutions to
quasilinear hyperbolic equations, similar singular be-
havior (the pointwise blowing up of derivatives of solu-
tions) is well known'®?! in one space dimension.

1. THE BLOW-UP THEOREM
The Cauchy problem to be considered has the form
iu, =Au+ F(fu [P, xR, >0, ulx,0)=q¢(x).
(4)
For simplicity, we shall assume that ¢ ¢ §. In addition,
we assume that the real-valued function F is smooth
enough so that a unique, local classical solution to (4)
exists, which lies in a Sobolev space of sufficiently high

order, This can be done using the existence theorem
of Segal.??

We begin with a lemma giving several identities which
will be used in the proof. We also define

G = [* Fls)ds.

Lemma: Let u be a solution of (4) (as above) on an
interval 0 <¢</{,. Then

® ““(t)“z: ”90”2’

(ii) fUVu’z-G(]ulz)]dx:constEEo,
(iii)(—‘lit—/fxleulzdx:—fllm v dx, v=|x|,

(iv) ‘—;—l[— Im

Y, dx = —2f| Vu |2dx
+nﬁ[u|2F(|u|2)-G(Iu’z)]dxo

(All integrals are taken over IR", and u denotes the com-
plex conjugate of w«.)

Proof: We first multiply (4) by 2z and take the imag-
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inary part of the result to get
2 uf?=v - @ mava).

Thus (i) follows. Now multiplying this identity by |x|2,
integrating over IR", and integrating the right-hand side
by parts, we obtain (iii). To establish (ii) we multiply
(4) by 27,, integrate, and take the real part of the re-
sulting expression. It remains to derive (iv). For this
purpose, multiply (4) by 2v%,: 2ivu,u, = 27u, Au
+2F(|u|®)run,. We integrate the real part of this ex-
pression over IR"; the result can be written as

1=1+11,

where

I=Reli [ 20 %, u, - w7, )dx],
kR

II=2Re [ vii,Audx,
IIT=2Re [ F(|u|?)run,dx.

We integrate by parts and find directly that
I=(n-2) ] [vau Izdx,

=7 [G(|u|?dx.

Finally, I can be written as

. (- i —
I=Re [1/? x, (af (2t 1) = o1, (uu)) dx]
= -C% Re[t;/;fuﬁrdx] +nRe[iﬁﬁtdx].

The last expression can be evaluated from (4) itself.
Thus we obtain

=2 Im/;*ﬁ'u dx +n‘/IVu’2dx
dt r
—nﬂu!zF(lu'z)dx

from which (iv) follows.

With these identities we can establish our principal
result:

Theovem: Let u be a classical solution to the Cauchy
problem (4) with ¢ € §. Assume that

(1 E,<0;
(2°) Im [ @@, dx>0;

(3°) there exists a constant ¢, >1+2/x such that
sF(s)> ¢,G(s} for all s=0.

Then there exists a finite time T, estimable from above,
such that

lim [[vu(t)|,=+.
tep =

Proof: Wherever u exists we put
y()=Im [vau dx.

By hypothesis (2°), y{(0) >0 and by (iv) of the lemma we
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have
@) =-2 [ |val2dx+n [[|u]>F(|u|?) - G({u]?)]dx.

Using hypothesis (3°) we find
3(t) > =2 [ | vu|?dx + nlc, - 1) [ G(|u]?dx.

We substitute (ii) of the lemma for the last term here on
the right; this gives

3> =2 [|vul*dx +nle, = D [ |Vul?dx - B)]
=[n(c,-1)-2] [ | va|?dx - n(c, - 1)E,.

Now E,; <0 by (1°), We put
E,=nlc,~1)-2
so that &, >0 by (3°). Then the above inequality implies
5B =k, || vult) 2. (5)
Since y(0) >0 and k,> 0, the function y(¢) is increasing

wherever u exists; thus y{(¢)> 0 there. From (iii) of the
lemma we have

%/rzlu[zdx: - 4Im [7uu, dx
= - 4y(t) <0,

Therefore, wherever u exists we have
[P uldx < (72| @|2dx= @ <=,

The Schwarz inequality then yields
v =y < ([72]u]2ax)/2( [ |u,|2dx)2

< do|| vul®) .

Hence from (5) we have the differential inequality

. k
()= =5 y2(¢)
% y
with
v(0)>0.
It follows that on the interval

ds

Ost< 20
k,v(0)

we have the estimate
v(O)dg
) 2
v @) ds -k v(0)t
thus we have the estimate

y(0)do

|valt) ||, = E— k(O

there too. Hence

Lm {[Vu(l) ||, =+«
t-T7

for some T'< T, < =, where

_ B
To= 4300 °

This completes the proof.
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Under an additional assumption, we can also con-
clude that sup | «| blows up. We state this as

Corollary 1: Suppose in addition to (1°)—(3°) that there
is a constant 0> 0 such that

s"'G(s) const s’ for all s> 0.

Then [|u(t)|l.. blows up in finite time.

Pyoof: We have E, <0 by (1%); hence by part (ii) of
the lemma,

G(lu!?)

|u|2dx

< const ||u(®) ||| ¢ |3

Thus [lu(#)ll,, blows up whenever ||Vu(#)l], does.

The proof of the theorem does not seem to generalize
ewsily. There is, however, one simple case which can
be directly handled. Suppose that F depends on both x
and |u|2, F=F{x,|u|?). We put

GC=Gx,u)= f" F(x,s)ds.

We calculate again expression III in the proof of the
lemma:

I =/k2 x, Flx, lu[z)gi—k [ |2dx

:/Zk)xk (a%cg; (, ul® Tfolulexk(x,S)ds) dx
==n [Glx, |u|?)dx - lulzvg (x,s)ds) dx.
_/ /([ or >

Hence if F, <0, we can “throw away” the extra term.
We state this as

Covollary 2: Let the F in Eq. (4) depend on x and
lul?,

F=F(x, |u|?.

Assume (1°) and (2°) of the theorem as well as:
(3°) there is a constant ¢, >1 +2/» such that

sF(x,s)> ¢, Glx,s) for all s> 0, xc IR",
4”)(oF/av)x,s)<0forall s=0, xc R" (r=1«1).

Then the conclusion of the theorem holds.

Before specializing, we consider briefly the achieve-
ment of hypothesis (2°) of the theorem. Consider for
example an initial function ¢(x) of the form

@(x) = exp(i|x |2)p(x),

where ¥(x) is any real-valued nontrivial element of §.
Then a direct calculation gives

Im [r@o,dx=2[r?|p|%dx
s0 that (2°) always holds in this case.

Finally, we consider Eq. (4) with F(s)=s®-1/2 (p>1),
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i.e., the equation
iu,=Au+ |u|ttu, xcR", >0, ulx,0)=o(x).
(6)

In this case we have
Iul2
6(lufs= [ " swvraas
0
2

=gl

Then hypothesis (3°) of the theorem requires that

colpm)/2
§°*8 = C
n(p -+

2 (pu)/z)
1 S

for some constant ¢,>1+2/n and for all s> 0. This
will be satisfied by choosing ¢, = (p +1)/2 provided

G+1)/2=c >1+2/n,

that is, provided p>1+4/n. This is precisely the com-
plementary condition mentioned in the Introduction.
Hence we have

Corollayy 3: For the Cauchy problem for Eq. (6) as-
sume that

@) 2, f (1woit- 25 L) acco,

(2°) Im [r@@,dx>0,

(39 p>1+4/n.
Then ||[Vu(t)ll, and ||u(¢)ll,, blow up in finite time.

In this special case, F(s)==s%1/2 we can also es-
tablish that other L norms of the solution blow up in
finite time., This we state as

Corollary 4: Consider Eq. (6) and assume (1°)—(3°) of
Corollary 3. Then:

(a) for every g>p+1, llu(d)ll, - + in finite time.

(b) Let g satisfy

g-(j)—l)<q<[)+l,

If n> 3, assume also that p <(n+2)/(n—2). Then
llu()ll, = + in finite time.

Proof: To prove (a), we note that, since |E;} =const
<o, {lu(®)ll,,, blows up in finite time since ||Vu(t)il, does
by Corollary 3. For g¢>p+1, we have, since £, <0,

2

Ivu@lz= o3 Hutl2]
<2 L g |2,
where
1 _8,1-0
p+1l 72 q

This proves (a). To prove (b), we assume that ¢ is in

R.T. Glassey 1796



the indicated range and apply the Sobolev inequality! to
get
@10, < const | vut 1 ut) [, @
where
1 1 1 1-¢
= o5
i,e., where

2n(p+1 q)
T D2n-qm-2)] "

Now E, < 0; hence part (ii) of the lemma yields the
estimate

[udo)] < const ) |4507%

Thus, from (7) we have

0] ua < const{lu(e) |17 | we) | 23202,

It follows that ||u(¢)ll, blows up in finite time, provided
(p+1)6/2<1,

Using the expression for 8 given above, we see that this
last condition is equivalent to

qg>m/2)(p-1).

CONCLUDING REMARKS

In a recent paper, Ball®® points out that arguments
similar to those employed here, while proving non-
existence of global solutions, do not by themselves
establish that nonexistence occurs by “blow up.” For
the Schrodinger equations considered here, we can
show, by estimating the relevant integral equation, that
nonexistence must occur by blow up, at least for n<3.
The invariance of the L, norm of a solution is helpful in
this regard.

It remains to be seen if a similar blow-up method
will apply to certain semilinear equations of relativistic
quantum mechanics, e.g., to particular classes of
nonlinear Dirac equations.
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Instantaneous Cauchy surfaces are defined and several of their properties are given. Instantaneous Cauchy
surfaces are achronal surfaces whose Cauchy development interiors are maximal on the set of all achronal
surfaces. It is shown that topology changes in such surfaces always result in nonempty future Cauchy
horizons and departures from global hyperbolicity. It is also shown that the structure which is usually
assumed for the background spacetime of a self-consistent exploding black hole implies a topology change

in instantaneous Cauchy surfaces.

1. INTRODUCTION

If one quantizes fields in a curved spacetime back-
ground, then one must weaken cosmic censorshipl'2
enough to allow the naked singularities that are believed
to accompany black hole explosions.®* This prospect
raises a serious problem of principle: One is forced to
consider spacetimes that do not have Cauchy surfaces.
What, then should one use for the “ regular spacelike or
null surfaces” that most versions of quantum field the-
ory require for defining commutation relations and ob-
taining complete sets of observables? This paper intro-
duces a new type of achronal surface which may help
to resolve this problem. The proposed surface will be
called an “instantaneous Cauchy surface” and is inter-
mediate between a partial Cauchy surface and a Cauchy
surface. This type of surface will be defined, some ex-
amples will be given to clarify the definition, and sev-
eral properties which follow from the definition will be
discussed.

Section II of this paper introduces the instantaneous
Cauchy surface. Section III applys this concept to a type
of singular background spacetime that has played a role
in past speculations about quantum general relativity:
the topology changing spacetimes discussed by Wheeler.’
The basic result of Sec. III is the rather obvious one
that, with suitable definitions, topology changes require
naked singularities. The new result is that the instan-
taneous Cauchy surface concept supplies the “suitable
definitions.” Furthermore, with these definitions, the
exploding black hole spacetimes that are of current in-
terest because of the Hawking px'ocessa'4 turn out to be
examples of topology change.

The notation and terminology of this paper are chosen
to agree with the text by Hawking and Ellis.! One slight
departure from the Hawking and Ellis conventions is that
here Cauchy surfaces and partial Cauchy surfaces are
only required to be achronal and need not be acausal.
Another slight departure is that the interior Cauchy de-
velopment intD(S) of a surface S is represented here by
DY(S). In this paper, a spacetime (M, g) is a connected,

#¥gupported in part by the National Science Foundation, Grant
Number MPS 74-18386-A01,
bSupported in part by the Alfred P. Sloan Foundation.
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Hausdorff C” 4-manifold M together with a C* Lorentz-
signature (-+++) metric g which renders M time ori-
entable.® The C? differentiability condition amounts to
the assumption that any shock waves or dust caustics
have been removed by a “smoothing process” which
replaces piecewise C? metrics by C? metrics.”

11. INSTANTANEOUS CAUCHY SURFACES

This paper is concerned with singularities which
disrupt attempts to predict the future from initial data
on “regular surfaces.” To define and classify such
singularities, one must define “regular.” Certainly a
Cauchy surface deserves to be called regular, but
spacetimes which admit Cauchy surfaces are rather
uninteresting. A Cauchy surface is too much to ask for.
A partial Cauchy surface, on the other hand, is too
little to ask for. Figure 1 shows a well-known example
of a bad choice of partial Cauchy surface in Minkowski
space. This surface is the set of points at a constant
proper-time interval to the past of an event O. It is an
unfortunate choice because its Cauchy development in-
terior is just I°(O) when there are other surfaces such
as =0 whose Cauchy development interiors are larger.
The implication here is that surfaces should be judged
according to the interiors of their Cauchy developments:
If D'(S) is a proper subset of DS, then S’ is a better
surface than S, The reason for comparing interiors
is that it is possible for a null-surface part of S to
lie outside of D(S) and therefore be useless for the
purpose of evolving initial data. Define an instantaneous
Cauchy surface to be an achronal surface S whose
Cauchy development interior is maximal on the set of
all achronal surfaces: i S’ is an achronal surface and
DYS) = DYS", then D(S)=D"S"). An immediate conse-
quence of this definition together with the well-known
result that globally hyperbolic spacetimes admit Cauchy
surfaces® is:

—X FIG. 1. An unsatisfactory
partial Cauchy surface in
Minkowski space.
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FIG. 2. The universal cover-
ing of anti-deSitter space. In
this conformal diagram, 2-
spheres are represented by
points and infinity is mapped
into a pair of vertical lines
not included in the manifold),
Any two acausal partial
Cauchy surfaces either have
the same Cauchy development
as with S’ and S’/ or fail to be
comparable as with S and §’.
Thus, in this spacetime,
every acausal partial Cauchy
-surface is an instantaneous
Cauchy surface.

Pyoperty 1: In a globally hyperbolic spacetime, the
instantaneous Cauchy surfaces are just the Cauchy
surfaces.

The example described by Fig. 1 shows that a partial
Cauchy surface may fail to be an instantaneous Cauchy
surface even when there are no singularities. One can
easily show that surfaces which are generated by in-~
extendable null geodesics without conjugate points fail
to be instantaneous Cauchy surfaces in strongly causal
spacetimes because such surfaces have empty Cauchy
development interiors. However, there are spacetimes
in which all partial Cauchy surfaces which are not of
this degenerate type are instantaneous. One such space-
time, the universal covering of anti-deSitter space, is
shown in Fig. 2.? In the closed Robertson—Walker
spacetime shown in Fig. 3, the “big bang” singularity
is responsible for some nondegenerate or even acausal
partial Cauchy surfaces failing to be instantaneous. It
is also possible to have a spacetime with no instantane-
ous Cauchy surfaces at all. For example, the Gddel
“rotating” universe'’ has closed timelike lines through
every point and therefore can have no instantaneous
Cauchy surfaces simply because it has no achronal sur-
faces. It is natural to ask “when and where do instan-
taneous Cauchy surfaces exist?” Work currently in pro-
gress indicates that a variety of existence theorems can
be proven. For example, strong causality is enough to
guarantee the existence of instantaneous Cauchy surfaces
through every point of a spacetime. This work will be
described in a following paper.

1. TOPOLOGY CHANGE

One source of interest in topology change is Wheeler’s
speculation that a fully quantized theory of general re-
lativity may, in some sense, require topology changes
in the 3-manifolds that are used to label complete sets
of field observables. This speculation cannot be dealt
with at the present time because there is, as yet, no

FIG. 3. A conformal diagram
of a closed Robertson—
Walker spacetime, The lower
. horizontal boundary is the

‘ “pig bang,” The partial

e Cauchy surface S cannot be

, an instantaneous Cauchy sur-
% face because D)S) =D(S) is a
proper subset of DYS"),
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FIG. 4. Topology change by spherically symmetric fission,
Each point in the left~hand figure represents a 2-gphere orbit
of spherical symmetry, The areas of these spheres go to zero
at the edges of the figure. Radial light rays travel at x£45° to
the vertical, The vertical boundaries are world lines of centers
of spherical symmetry and are not singular. The bottom
boundary, shown dashed because it is not in the manifold, is
the big bang singularity while the top boundaries are final col~
lapse singularities. The diagonal wavy lines represent the fu-
ture Cauchy horizon H*(S). The figures on the right display
three successive instantaneous Cauchy surfaces with an angle
coordinate restored so that 2-spheres now appear as circles
instead of points.

fully satisfactory quantum theory of general relativity.
However, one can consider situations in which quantized
nongravitational fields react back on a spacetime which
is not quantized and is defined in a semiclassical mean-
field sense. Wheeler’s speculation then leads one to
wonder if topology change can become important in these
supposedly more manageable situations. How would one
recognized a background spacetime that is describing

a topology change? One would define a kind of surface
which supports complete or at least maximal sets of
field observables and one would then look for topology
changes in these surfaces. The instantaneous Cauchy
surfaces are obvious candidates for these surfaces.

In order to understand what it means to define topo-
logy change in terms of instantaneous Cauchy surfaces,
consider some examples. Figure 4 shows the Penrose
diagram of a spacetime that is often cited as an exam-
ple of topology change, a closed universe which under-
goes fission. ! Figure 5 shows a similar topology change
in which a closed universe buds off from an open one.
These examples show that it will not do to define topo-
logy change in terms of partial Cauchy surfaces because
one could take just one component of the final surface
S’ in each case and note that it is homeomorphic to S.
The surfaces S and S’ in Figs. 4 and 5 are instantaneous
Cauchy surfaces. Notice that S’ has an extra piece
which is needed to supply initial data for the region that
falls into the singularity that is associated with the
topology change. Thus, the “fission” process produces

FIG. 5. A closed universe
budding from an open uni-
verse. The conventions are
as in Fig. 4 except that a
conformal transformation
has mapped the null infinities
into diagonal boundaries and
the figures at the right are
to be rotated about their ver-
tical symmetry axes in order
to restore the angle
coordinate.
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- choice of partial Cauchy sur-
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l faces. The conventions are
) as in Figs. 4 and 5.
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two regular 3-manifolds and a sort of “left-over scrap.
Figure 6 shows another example that is sometimes de-
scribed as a topology change, the collapse of a star to
form a classical black hole. However, the Penrose
diagram of this spacetime makes it quite clear that the
topology change in this case is an artifact of the choice
of partial Cauchy surfaces. Instantaneous Cauchy sur-
faces in this globally hyperbolic spacetime are just the
Cauchy surfaces and cannot change topology.®

It is fairly obvious at an intuitive level that topology
changes require spacetime singularities. With topology
change defined in terms of instantaneous Cauchy sur-
faces, this idea finds precise expression in terms of
the properties of these surfaces. From Property 1 and
Geroch’s result that all Cauchy surfaces are homeo-
morphic to one another, ® one can easily show the follow-
ing property:

Property 2: If S and S’ are instantaneous Cauchy sur-
faces in a spacetime M and either H(S) is empty or M
is globally hyperbolic, then S’ is homeomorphic to S.

If one chooses to regard any departure from global
hyperbolicity as a naked singularity, ¢ then the property
states that a topology change is necessarily accompanied
by a naked singularity which causes a breakdown in the
unique evolution of fields that obey causal wave equa-
tions. The difficulty with this property is that it says
nothing about the location of the singularities and ties
them to the topology change only by a kind of “circum-
stantial evidence.” For example, the property leaves
open the possibility that the singularity occurs long be-
fore the topology change becomes manifest or perhaps
long afterward. Fortunately, a more specific property
can be proven without too much trouble:

Property 3: f S and S’ are instantaneous Cauchy sur-
faces in a spacetime with S acausal, S'<I'(S), and
either H*(S) empty or I'(S) globally hyperbolic, then S’
is homeomorphic to S.

Proof; Suppose H*(S) is empty and consider the sub-
manifold K : =I'(D(S)). Because S is acausal, its Cauchy
development includes a neighborhood of each of its
points. Thus, S is in the interior of D(S) and is a subset
of K. Regard K as a spacetime and note that H(S, K)
=H"(S, K). From the way in which K has been defined,
H'(S, K) =H*(S) so that H(S, K) is empty. Thus S is a
Cauchy surface for K which is therefore globally hyper-
bo];ic and thus K = 5(5, K)C D(S). But, S'CI'M(S)TK
< D(S) so that D*(S")<: D%(S). Since S’ is an instantaneous
Cauchy surface, it follows that D°(S’) = D'(S). Thus, S’
is also a Cauchy surface for K and, from a result of
Geroch, ® S’ is homeomorphic to S.

Now suppose that I°(S) is globally hyperbolic. It then
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includes a Cauchy surface S”, an achronal surface such
that I'(S) C D(S™).® But every inextendable timelike curve
through a point of the acausal surface S enters I'(S) and
must therefore intersect S”. Consequently S D(S") so
that D°(S) D%S"). Because S is an instantaneous Cauchy
surface, D'(S)=D%S"). But then I'(S) < D*(§") < DX(S)

and thus 8’ D(S) which leads to the same conclusion

as before.

Because the whole point of the instantaneous Cauchy
surface concept is that these surfaces can be defined
in spacetimes that behave badly, the useful form of
Property 3 is the negative one:

Property 3": If S and S” are instantaneous Cauchy sur-
faces in a spacetime with S acausal, S'CI*(S) and S’ is
not homeomorphic to S, then H*(S) is not empty and
I'(S) is not globally hyperbolic.

Thus, a topology change to the future of S induces a
naked singularity to the future of S.

IV. EXPLODING BLACK HOLES

Topology change has, until now, been a highly spe-
culative subject with only the most tenuous connection
to known physical processes. With the definition of topo-
logy change in terms of instantaneous Cauchy surfaces,
it is now possible to recognize that a plausible example
of topology change is already known and under
intensive investigation. Hawking's exploding black hole
is a topology change. Figure 7 shows the Penrose con-
formal diagram of spherically symmetric exploding
black hole spacetime. This is the spacetime which most
current workers (with notable exceptionslz) expect to
result from a fully self-consistent black hole explosion.
Without a precise definition of topology change one
would not think of this spacetime as an example of topo-
logy change. The surfaces S and S’ shown in the figure
appear to be “regular” and are homeomorphic to each
other. However, the surface S’ is not an instantaneous
Cauchy surface because the surface /7(S’) has a larger
Cauchy development. To obtain an instantaneous Cauchy
surface which includes S’ one must add an extra piece
which may be taken to be the surface of the black hole.
The Hawking particle creation calculation makes it quite
clear that final particle states are to be constructed
from operators defined on both S’ and the surface of
the black hole. Thus, the instantaneous Cauchy surface
leads one to make the right choice of final surface for
the quantum field theory calculation. Because the final
surface { *(S") consists of two disjoint components, it is
not homeomorphic to S and there is a topology change.

FIG. 7. A possible background
i spacetime for a self-consis-
r tent exploding black hole. The
conventions are as in
Figs., 4—6. The wavy line
shows the future Cauchy hori-
zon that is demanded by the
propogition in the text and the
dot-dash line shows the sur-
face of the black hole which
must be combined with S’ to
make an instantaneous Cauchy
surface.
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By making full use of the instantaneous surface con-
cept one can do somewhat better than recognizing one
speculative example of an exploding black hole as a
topology change. One can define a general class of dis-
appearing black hole spacetimes and show that they are
all topology changes. The usual definition of a black
hole, exploding or otherwise, requires weak asympto-
tic simplicity so that an exterior future null infinity
4" and a corresponding black hole surface J "(¢") can be
defined. However, if the black hole disappears, there is

no reason to wait forever to see the last ray that escapes

from it. In Fig. 7, one can just wait until the surface

S’ and define the black hole surface to be just /-(S") - S”.
Here S’ is a “regular” surface for the external part of
the spacetime. A natural generalization of this surface
is the externally instantaneous Cauchy suvface which

is defined to be a surface S which is an instantaneous
Cauchy surface for the spacetime I"(S) U SUTI'(S). A gen-
eralization of the situation described by Fig. 7 is then
the following proposition.

Proposition: If a spacetime contains a closed, edge-
less, externally instantaneous Cauchy surface S’ and an
acausal instantaneous Cauchy surface S such that

(1) 1-(8") - S" is not empty,

(2) 1-(S) is an instantaneous Cauchy surface,
(3) I-(s") C I'(9),

(4) S is homeomorphic to S,

then the instantaneous Cauchy surfaces S and I(S’) are
not homeomorphic, H*(S) is not empty, and I*(S) is not
globally hyperbolic.

Proof: The closed, edgeless nature of S’ ensures that
1+(8) consists of at least two disjoint components, S’
and the set of black hole surfaces that make up 7 (S)
—8’. The rest follows from Property 3.

The disappearing black hole proposition is not quite
as general as one might wish. It applies to a spacetime
which contains black holes [from (1)] that have all
formed from gravitational collapse [from (2) and (3)]
and an external region that shows no topology change
[from (3) and (4)]. Its applicability to primordial black
holes depends on the details of their formation. Re-
quirements (2) and (3) could easily be violated for black
holes associated with very early density fluctuations in
the big bang. However, for primordial black holes that
can actually be said to “form from density fluctuations”
in the sense that there is an instantaneous Cauchy sur-
face between them and the initial singularity, the pro-
position applies and says that the disappearance of such
black holes is equivalent to a topology change in instan-
taneous Cauchy surfaces,
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Expressions for the ground and excited state energies of a system of nucleons interacting through pairing

forces are given as a power series in inverse powers of the number of particles. The expressions are valid
for systems with superfluid ground states and either J =0 or L =0 pairing. The first three terms in the
expansion are given explicitly, and they exhibit excitations with both vibrational and rotational (in isospin
space) character. Analytical and numerical results are given for a model system with a two-level single-

particle spectrum.

I. INTRODUCTION

Exact expressions for the energies and wavefunctions
of the ground and excited states of various pairing
Hamiltonians of interest in nuclear structure studies
have been developed over the past few years.'=® These
results complement the many approximate calculations®
that have been applied to these Hamiltonians and they
have also provided the basis for numerical calcula-
tions.® The approximate calculations have generally
been based on techniques developed in the BCS theory
of superconductivity.® These techniques are asympto-
tically exact in the limit of a large system. The numeri-
cal studies, on the other hand, are useful for studying
small systems. The analytical connection between
these two approaches is given in this paper. We give
explicit expressions for the energies of the states and
the occupation probabilities of the single-particle levels
as expansions in inverse powers of the number of par-
ticles. We show that the leading term in this expansion
is just the BCS expression for the energy and the higher
order terms in the expansion can be obtained as func-
tions of the energy-gap and chemical potential that cha-
racterize the BCS expression. These results are ob-
tained for the ground state and pairing-vibration ex-
cited states as well as the isospin “rotational” states
built upon these band heads. We are therefore able to
give explicit expressions for the parameters character-
izing these modes of collective excitation and their in-
teractions. States with single-particle as well as col-
lective excitations, i.e., unpaired nucleons, will be
treated in a subsequent paper.

It is well known that a system of nucleons interacting
through pairing forces can make a discontinuous transi-
tion to or from a superfluid state as one varies the
number of nucleons. This observation seems to imply
that the expansion we have just described does not exist
since it can not represent such nonanalytic behavior.
However, our expansion has a different interpretation.
It must be viewed as the sequence of corrections to the
thermodynamic limit that are due to the finite size of
the system. That is, the expansion of the energy is to
be viewed as an expansion in inverse powers of the num-
ber of particles taken at fixed, nonvanishing, energy-
gap and fixed chemical potential. The point at which
this interpretation is imposed on our results will be
indicated in what follows. Thus, our expansion will be
shown to be valid as long as the leading term exhibits
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superfluidity. The interesting transition region still re-
mains an open problem.

We now review the results that form the starting point
for this work. We consider A =2P nucleons contained
in a potential well whose single-particle levels are
labeled by the index % and have energies ¢, and spatial
degeneracies Q,. These nucleons interact with each
other through a pairing interaction that is effective in
one of the following two-body states: (1) /=0, T,=1,
Ref. 1; (2) J=0, T=1, Ref. 2; or (3) L=0, S+ T=1,
Ref. 3. Here, L and J refer to the orbital and total
angular momentum of the pair and S and 7T refer to its
total spin and isospin. In these three cases the ener-
gies of the states of the system are given by

P
E=22,e(i), (1)
i=l
where the e(i) are, in general complex, roots of the

system of algebraic equations

1 1w @
e(iy—e(i) " k5 eld) —€,

P, (2)

0,

Eidy
_‘+> !
KG ;:’1

i=1,..

where the pairing interaction strength is taken to be
G/P so that the energy is an extensive quantity for
fixed G in the thermodynamic limit. Furthermore, we
assume that the sum over % is of order A, in order to
obtain a sensible thermodynamic limit, i.e., we are
assuming that the product of the interaction strength
and the level density are a constant in this limit. Each
state of the many-nucleon system corresponds to a dif-
ferent set of roots of this system of equations and the
parameter k distinguishes between the three different
interactions given above taking on the values

K=2, case (1},
PP-3)+T(T+1) ..
PE-D , T=P,P-2,...,00r 1, case (2),
PP -8)+pp+4)
= = — ...,0 1, 3 .
PP-1) , p=P,P-2, or 1, case (3)
(3)

Case (1) is the case treated by BCS and is of course

the same as case (2) with 7=P. In order to make our
discussions explicit, we will always assume that « takes
on the values given in case (2) unless otherwise stated.

Copyright © 1977 American Institute of Physics 1802



The occupation probabilities of the single-particle lev-
els for a given state of the system may be obtained
from (1) by differentiating E with respect to the appro-
priate single-particle energy. More details on these
equations can be found in the references cited.

Progress in understanding Egs. (2) was made by
Gaudin’ who, guided by an electrostatic analogy, trans-
formed the equations into integral equations equivalent
to the BCS equations. However, his technique was limit-
ed to obtaining the leading contribution to the energy,
in powers of 1/4, and therefore was not applicable to
excited states which are degenerate with the ground
state to this order. In this paper, we use the electro-
static analogy to recast Eqs. (2) in a form that is
amenable to an expansion in powers of 1/A. This is
done and applied to the ground state and its associated
band of isospin rotational states in Sec. II. In Sec. III,
we apply the expansion to pairing-vibration excited
states and their isospin rotational states. In Sec. IV,
we consider some analytical and numerical examples
of our results and we conclude with a general discus-
sion in Sec. V. The reader is urged to look forward to
the examples in Sec. IV as an aid in following the analy-
sis presented in Secs. II and III.

1l. GENERAL THEORY AND THE GROUND STATE

We seek a method for representing the solutions of
Egs. (2) as a power series in the small parameter 1/4.
In developing this method, we will neglect the A depen-
dence of the parameter « and therefore each term in
the expansion will be a function of ¥ as well as the
other parame